

Building upon the second book in the series, C++ Data Structures from Scratch, Vol. 3.1 is a
comprehensive guide to creating fully functional, STL-style implementations of more advanced data
structures and algorithms, introducing new and powerful C++ language concepts along the way.

Key features:

● 190+ complete source code files, with detailed line-by-line analysis and diagrams

● 50+ sample programs directly illustrating key concepts from each chapter

● Free sample content and online support at the official website, cppdatastructures.com

Major topics:

● Tries (speed-optimized)
● Compressed tries (memory-optimized)
● Disjoint sets
● Tables
● Graphs

● Pathfinding algorithms
● Dijkstra
● Bellman-Ford
● Floyd-Warshall
● Cycle detection

● Connectivity algorithms
● Kruskal (minimum spanning tree)
● Tarjan-Hopcroft (articulation points, biconnected components)
● Kosaraju, Tarjan (strongly connected components)

● Dependency analysis (topological sort)

● ASCII file input
● Exception handling

About the author:

● Robert MacGregor is the developer of a C++ API for financial market trading systems. He is
also a CTA (Commodity Trading Advisor) in the National Futures Association, and a
Chartered Market Technician in the CMT Association.

Cover illustration: ConcentriCity by Mark J. Brady (markjaybeefractal.com)

C++ Data Structures from
Scratch, Vol. 3.1

Robert MacGregor

To purchase the full version, visit cppdatastructures.com

Copyright 2021 by Robert MacGregor. All rights reserved.

No part of this book may be reproduced or transmitted by any means without the prior written consent of the
author.

Although every precaution has been taken to verify the accuracy of the information contained herein, the author
and publisher assume no responsibility for errors or omissions. Furthermore, no liability is assumed for any
damages resulting from the use of the information or programs contained herein.

Published by South Coast Books

For errata, supplementary material, and contact / purchase information, visit www.cppdatastructures.com.

Cover illustration: ConcentriCity by Mark J. Brady (www.markjaybeefractal.com)

ISBN-10: 0-9962115-4-3
ISBN-13: 978-0-9962115-4-3

1st Printing, September 2021

To purchase the full version, visit cppdatastructures.com

Dedicated to Mom and Dad

To purchase the full version, visit cppdatastructures.com

To purchase the full version, visit cppdatastructures.com

Table of Contents

Introduction and Getting Started

Part 1: Tries

1.1: Introducing the Trie Class 1
1.2: Converting Characters to Index Values 9
1.3: Searching a Bucket 11
1.4: Completing the Node Implementation 15
1.5: Recursive In-Order Traversal 19
1.6: Lexicographical Comparison 21
1.7: Inserting Elements 27
1.8: String Pair Databases 47
1.9: Iterative In-Order Traversal 53
1.10: Implementing the Iterators 65
1.11: Implementing Search 73
1.12: Erasing Elements 85
1.13: Copy and Assignment 101
1.14: Mixed-Case Prefixes 113
1.15: Digits and Punctuation 121

Part 2: Compressed Tries

2.1: Introducing the CompressedTrie Class 127
2.2: Recursive In-Order Traversal 131
2.3: Inserting Elements 133
2.4: Iterative In-Order Traversal 149
2.5: Implementing the Iterators 155
2.6: Implementing Search 157
2.7: Erasing Elements 167
2.8: Copy and Assignment 179

Part 3: Disjoint Sets

3.1: Introducing the DisjointSet Class 189
3.2: Implementing the Iterators 201
3.3: Copy and Assignment 205

Part 4: Embedded Maps

4.1: Introducing the EmbeddedMap Class 213
4.2: Using a Non-Default KeyRetrieve Function 221

To purchase the full version, visit cppdatastructures.com

4.3: Introducing the RestrictedEmbeddedMap Class 223

Part 5: Tables

5.1: Introducing the Table Class 225
5.2: Erasing Rows and Columns 241
5.3: Copy and Assignment 247

Part 6: Graphs

6.1: Introducing the Vertex and Edge Classes 251
6.2: Introducing the Graph Class 265
6.3: Copy and Assignment 269
6.4: Loading a Graph from a File 275
6.5: Introducing the DemoWeightedGraph Class 279

Part 7: Graph Traversal

7.1: Depth-First Search 283
7.2: Breadth-First Search 293

Part 8: Pathfinding Algorithms

8.1: Dijkstra's Algorithm 303
8.2: Introducing the Path Class 321
8.3: Bellman-Ford Algorithm 327
8.4: Optimized Bellman-Ford Algorithm 355
8.5: Floyd-Warshall Algorithm 361
8.6: Cycle Detection 383

Part 9: Connectivity

9.1: Kruskal's Algorithm 393
9.2: Articulation Points 411
9.3: Biconnected Components 427
9.4: Transposition 439
9.5: Kosaraju's Algorithm 449
9.6: Tarjan's Algorithm 461

Part 10: Dependency Analysis

10.1: Topological Sort 471

To purchase the full version, visit cppdatastructures.com

Index 477

To purchase the full version, visit cppdatastructures.com

To purchase the full version, visit cppdatastructures.com

Introduction and Getting Started

Chapter outline

– A brief review of Volume 2
– Obtaining the accompanying source code
– Recommended study approach
– A brief overview of Volume 3.1

Before we begin, let's briefly review the major topics that we covered in Volume 2 of C++ Data
Structures from Scratch:

– Data structures
– Heap
– BTree
– RedBlackTree
– SkipList
– ForwardList (singly-linked list)
– HashTable

– Algorithms
– Selection sort, Shell sort, and merge sort
– Binary search
– FNV hash

– Language concepts
– Inheritance
– Polymorphism, abstract classes, and virtual functions
– Automatic resource management via shared pointers (SharedPtr)
– Binary numbers, hardware (bit / byte) representation, and bitwise operations

If you haven't yet worked through Volumes 1 and 2, I highly recommended that you do so unless you're
already familiar with the material. In addition to building upon the above concepts, we'll also reuse
some of the source code from Volumes 1 and 2, which won't be reexplained.

To obtain the accompanying source code for this book (which includes the pertinent source code from
Volumes 1 and 2), please visit the official website, www.cppdatastructures.com. The source code is
divided into three main folders:

– ds3, which contains the (new) Volume 3 source code
– ds2, which contains (only) the reused source code from Volume 2
– dss, which contains (only) the reused source code from Volume 1

The Source files and folders section at the beginning of each chapter lists the relevant source code files

To purchase the full version, visit cppdatastructures.com

and / or folders for that chapter. The root folder (ds3) is omitted. If a folder is listed without specific
filenames, it means that we'll be using all of the files in that folder. The listing for Chapter 1.1, for
example,

Source files and folders

– TrieNode/1
– TrieNode/common/memberFunctions_1.h

indicates that Chapter 1.1 uses:

– All of the files in the folder ds3/TrieNode/1
– The file ds3/TrieNode/common/memberFunctions_1.h, but not the other files in

ds3/TrieNode/common

Some chapters also include a listing of relevant database files and / or diagrams. The root folder (ds3)
is omitted. The listing for Chapter 1.8, for example,

Database files

– stringPairDatabase/lowercase_1.txt

Diagrams

– diagrams/figure_1.1.txt

indicates that:

– ds3/stringPairDatabase/lowercase_1.txt will be read by the accompanying program
– ds3/diagrams/figure_1.1.txt will be referenced throughout the chapter

To view the diagrams, use a plain text editor such as Microsoft Notepad or Notepad++, with the Word
Wrap function disabled. If Word Wrap is enabled, the diagrams may not display correctly.

The recommended study approach for each chapter is

– Open the required source files, database files, and diagrams.
– Read the chapter, following along with the files.
– Compile the source code and run the program.
– Read the chapter again, recreating the source code from scratch.
– Compile the recreated source code and run the program, verifying the output.

Before we begin, here's a brief overview of what we'll cover in Volume 3.1:

In Part 1, we'll implement the Trie class. A trie (pronounced “try”) is a type of data structure in which
the key values are sorted by prefix. Searching for the prefix pen, for example, would return all the keys
beginning with pen, such as {penguin, penitentiary, pentagon}.

To purchase the full version, visit cppdatastructures.com

In Part 2, we'll implement the CompressedTrie class, which provides the same functionality as Trie, but
sacrifices raw speed for greater memory efficiency.

In Part 3, we'll implement the DisjointSet class. A disjoint set is a type of data structure that lets us
create groups of elements, called subsets, which can be merged (combined). We can also efficiently
determine whether two given elements belong to the same subset. Disjoint sets play an integral role in
Kruskal's Algorithm, which we'll implement in Part 9.

In Part 4, we'll create the EmbeddedMap and RestrictedEmbeddedMap classes. Both of these classes
are thin wrappers around a std::map, providing a more specialized interface. We'll use them to
implement the Table and Graph classes in Parts 5 and 6.

In Part 5, we'll implement the Table class, a collection of elements sorted by rows and columns, similar
to a spreadsheet. In addition to looking up individual elements, we can easily insert or erase an entire
row (or column), as well as iterate through each element in a particular row (or column). We'll use the
Table class to implement the Floyd-Warshall Algorithm in Part 8, and the Hungarian Algorithm in
Volume 3.2.

In Part 6, we'll implement the Graph class, a type of data structure that models relationships between
elements, called vertices. Unlike the nodes in a tree, the vertices in a graph aren't limited to parent-
child relationships; any vertex (element) can be connected to any other vertex.

In Part 7, we'll implement two methods of visiting each vertex in a graph, depth-first traversal and
breadth-first traversal.

In Part 8, we'll implement three algorithms for finding the shortest path between vertices: Dijkstra's
Algorithm, the Bellman-Ford Algorithm, and the Floyd-Warshall Algorithm. We'll also implement an
algorithm to detect cycles (looping paths) within a graph.

In Part 9, we'll implement some common algorithms that evaluate the connectivity of a graph (the
robustness of the connections between vertices): Kruskal's Algorithm, the Tarjan-Hopcroft Algorithm,
Kosaraju's Algorithm, and Tarjan's Algorithm.

In Part 10, we'll implement topological sort, a method of sorting vertices from least-dependent to
most-dependent.

To purchase the full version, visit cppdatastructures.com

To purchase the full version, visit cppdatastructures.com

C++ Data Structures from
Scratch, Vol. 3.1

To purchase the full version, visit cppdatastructures.com

To purchase the full version, visit cppdatastructures.com

189

Part 3: Disjoint Sets

3.1: Introducing the DisjointSet Class

Source files and folders

– DisjointSet/1
– DisjointSet/common/DisjointSetNode.h
– DisjointSet/common/memberFunctions_1.h
– printDisjointSet

Chapter outline

– Overview and terminology
– Implementing push_back, findRoot, and unionByRank
– Printing the entire structure

A disjoint set is a type of data structure in which the elements are divided into non-overlapping subsets
(subsets that don't share any common elements). Each subset is represented as a tree, deriving its name
from its root element. The disjoint set

 a b c w x y z

for example, contains a total of 7 elements, {a, b, c, w, x, y, z}, which may be divided into several
possible subsets, such as

 a b c w x y z

 Subset a consists of element {a}
 Subset b consists of element {b}
 Subset c consists of element {c}
 Subset w consists of element {w}
 Subset x consists of element {x}
 Subset y consists of element {y}
 Subset z consists of element {z}
__

 a c w__ z
 | | |
 b x y

 Subset a consists of elements {a,b}
 Subset c consists of element {c}
 Subset w consists of elements {w,x,y}
 Subset z consists of element {z}
__

To purchase the full version, visit cppdatastructures.com

190

 b__ y_____
 | | | | |
 a z w x z

 Subset b consists of elements {b,a,z}
 Subset y consists of elements {y,w,x,z}

Disjoint sets are optimized to perform the following operations:

– Creating a new subset (inserting a new element)
– Determining which subset a given element belongs to (finding the root of a given element)
– Merging two subsets

A DisjointSet<T>, which contains elements of type T, is implemented as a vector of nodes. Each node
contains

– an element of type T
– an index value, corresponding to the node's position within the vector
– a pointer to the parent node (null for root nodes)
– a rank value (only applicable to root nodes), used when merging two subsets

As usual, we'll refer to each node by its contained element. The DisjointSet<char>

 index 0 1 2 3 4 5 6
 node a b c w x y z

 a(1)__ w(2)_______
 | | | | |
 b c x y z

for example, contains a vector of 7 nodes:

– Node a contains the char value a, an index value of 0, a null parent pointer, and a rank of 1
– Node b contains the char value b, an index value of 1, and a parent pointer to node a
– Node c contains the char value c, an index value of 2, and a parent pointer to node a
– Node w contains the char value w, an index value of 3, a null parent pointer, and a rank of 2
– Node x contains the char value x, an index value of 4, and a parent pointer to node w
– Node y contains the char value y, an index value of 5, and a parent pointer to node w
– Node z contains the char value z, an index value of 6, and a parent pointer to node w

We'll begin by implementing the node class (DisjointSetNode.h). The template parameter T (line 8) is
the element type. The member types (lines 11-14) are

– value_type, the element type T
– Index, an alias of size_t
– Rank, an alias of size_t

To purchase the full version, visit cppdatastructures.com

191

– Node, an alias of DisjointSetNode

and the data members (lines 20-23) are

– element, the contained element
– index, the node's relative position within the vector
– parent, a pointer to the node's parent
– rank, the node's rank

The constructor (line 16) initializes the element and index via the given arguments, the parent pointer
to null, and the rank to 0 (lines 28-31).

The member function isRoot (line 18) returns true if the node is a root, by checking its parent pointer
against null (line 39).

Now that we've implemented the node class, we're ready to begin implementing DisjointSet. The
template parameter T (DisjointSet.h, line 12) is the element type. The member type Node (line 16) is
an alias of DisjointSetNode<T>, and the private data members (lines 51, 59-60) are

– _nodes, a vector<Node*>
– _alloc, an allocator<Node>

The default constructor (line 25) initializes _nodes as empty (memberFunctions_1.h, lines 3-7).

The private member function _createNode (DisjointSet.h, line 55) creates a new node containing the
given element and index, and returns a pointer to the new node (memberFunctions_1.h, lines 157-166).

_destroyNode (DisjointSet.h, line 56) destroys the given node n and deallocates the corresponding
memory block (memberFunctions_1.h, lines 168-173).

_destroyAllNodes (DisjointSet.h, line 57) destroys each node in _nodes (memberFunctions_1.h, lines
175-180).

The destructor (DisjointSet.h, line 26) simply calls _destroyAllNodes (memberFunctions_1.h, lines 9-
13).

The public member function empty (DisjointSet.h, line 28) returns true if the set is empty
(memberFunctions_1.h, lines 15-19).

size (DisjointSet.h, line 29) returns the total number of elements (memberFunctions_1.h, lines 21-25).

capacity (DisjointSet.h, line 30) returns the maximum number of elements that the set can contain, at
which point inserting another element will automatically trigger a reallocation (memberFunctions_1.h,
lines 27-31).

To purchase the full version, visit cppdatastructures.com

192

front / back (DisjointSet.h, lines 31-32, 37-38) return references to the first and last elements
(memberFunctions_1.h, lines 33-43, 64-74).

operator[] (DisjointSet.h, lines 33, 39) returns a reference to the element at the given index
(memberFunctions_1.h, lines 45-50, 76-81).

beginBlock (DisjointSet.h, lines 34, 45) returns a pointer to the first node pointer
(memberFunctions_1.h, lines 52-56, 109-113).

endBlock (DisjointSet.h, lines 35, 46) returns a pointer to the one-past-the-last node pointer
(memberFunctions_1.h, lines 58-62, 115-119).

reserve (DisjointSet.h, line 40) increases the capacity to meet or exceed the desired newCapacity,
triggering a reallocation. If the newCapacity is less than or equal to the current capacity, the function
does nothing (memberFunctions_1.h, lines 83-87).

push_back (DisjointSet.h, line 41) inserts the newElement at the back of the set. The newly inserted
element is the root of a new subset (memberFunctions_1.h, lines 89-93).

clear (DisjointSet.h, line 42) removes all elements from the set (memberFunctions_1.h, lines 95-100).

The private member function _findRoot (DisjointSet.h, line 53) finds the root of the given node n, sets
n's parent link to the root, and returns a pointer to the root:

– If n isn't the root (memberFunctions_1.h, line 130), we recursively call _findRoot for n's
parent and assign the return value (the root of n) to n's parent link (line 132). We then return
n's parent (which is now the root of n) (line 133).

– If n is the root, we simply return n (line 136).

Given the set

 a b c d e

 a
 |
 b
 |
 c
 |
 d
 |
 e

for example, the function call

 _findRoot(d);

To purchase the full version, visit cppdatastructures.com

193

performs the following operations:

 _findRoot(d)
 {
 d->parent = _findRoot(c)
 {
 c->parent = _findRoot(b)
 {
 b->parent = _findRoot(a)
 {
 return a;
 }
 = a;

 return b->parent (a);
 }
 = a;

 return c->parent (a);
 }
 = a;

 return d->parent (a);
 }

The layout of the tree thus becomes

 a_____
 | | |
 b c d
 |
 e

in which every node along the ancestral path from d to b has been promoted (been made an immediate
child of the root). Node c, which was formerly node a's grandchild, is now a direct child of node a.
Similarly, node d, which was formerly node a's great-grandchild, is now a direct child of node a.

The public member function findRoot (DisjointSet.h, line 47) simply forwards the call to _findRoot
(memberFunctions_1.h, lines 121-125). This will allow us to update findRoot later on, without having
to duplicate the code in _findRoot.

The member function flatten (DisjointSet.h, line 44) promotes each node in the set:

– For trees consisting of 1 node, the height (0) is unchanged.
– For trees consisting of 2 nodes, the height (1) is also unchanged.
– For trees consisting of 3 or more nodes, the height (which is greater than or equal to 1) is

reduced to 1.

To implement this function, we simply call _findRoot for each node in the set (memberFunctions_1.h,
lines 105-106). Given the set

To purchase the full version, visit cppdatastructures.com

194

 b d i a j h e

 a h
 | |
 b i
 | |
 c j
 |
 d
 |
 e

for example, flatten performs the following operations:

 _findRoot(b); // no promotion (b->parent is the root)
__

 _findRoot(d);

 a_____ h
 | | | |
 b c d i
 | |
 e j
__

 _findRoot(i); // no promotion (i->parent is the root)
__

 _findRoot(a); // no promotion (a is the root)
__

 _findRoot(j);

 a_____ h__
 | | | | |
 b c d i j
 |
 e
__

 _findRoot(h); // no promotion (h is the root)
__

 _findRoot(e);

 a________ h__
 | | | | | |
 b c d e i j

The private member function _unionByRank (DisjointSet.h, line 54) takes two nodes a and b, and
merges their respective subsets according to rank. If a and b are in the same subset, no merging takes
place.

To purchase the full version, visit cppdatastructures.com

195

We begin by finding the roots of a and b, designated as x and y (memberFunctions_1.h, lines 142-143).
If x and y are the same node (meaning that a and b have the same root, thus belonging to the same
subset), we return without doing anything (lines 145-146).

If a and b belong to different subsets, the lower-ranking root becomes a child of the higher-ranking
root:

– If x ranks lower than y, then x becomes a child of y (lines 148-149)
– If x ranks higher than or equal to y, then y becomes a child of x (lines 150-151)
– If x ranks equal to y, x's rank increases by 1 (lines 153-154)

Given the set

 a(0) b(0) c(0) w(0) x(0) y(0) z(0)

for example, let's walk through a few calls to _unionByRank:

 _unionByRank(a, b)
 {
 a's root (a) ranks equal to b's root (b)
 attach b to a;
 ++a->rank;
 }

 a(1) c(0) w(0) x(0) y(0) z(0)
 |
 b
__

 _unionByRank(b, c)
 {
 b's root (a) ranks higher than c's root (c)
 attach c to a;
 }

 a(1)__ w(0) x(0) y(0) z(0)
 | |
 b c
__

 _unionByRank(w, x)
 {
 w's root (w) ranks equal to x's root (x)
 attach x to w;
 ++w->rank;
 }

 a(1)__ w(1) y(0) z(0)
 | | |
 b c x
__

To purchase the full version, visit cppdatastructures.com

196

 _unionByRank(y, z)
 {
 y's root (y) ranks equal to z's root (z)
 attach z to y;
 ++y->rank;
 }

 a(1)__ w(1) y(1)
 | | | |
 b c x z
__

 _unionByRank(x, z)
 {
 x's root (w) ranks equal to z's root (y)
 attach y to w;
 ++w->rank;
 }

 a(1)__ w(2)__
 | | | |
 b c x y
 |
 z
__

 _unionByRank(b, w)
 {
 b's root (a) ranks lower than w's root (w)
 attach a to w;
 }

 __w(2)__
 | | |
 __a x y
 | | |
 b c z

The public member function unionByRank (DisjointSet.h, line 43) simply forwards the call to
_unionByRank (DisjointSet.h, lines 63-67). This will allow us to update unionByRank later on, without
having to duplicate the code in _unionByRank.

The standalone function (printDisjointSet.h, lines 8-9),

 template <class DisjointSet>
 void printDisjointSet(DisjointSet& d);

prints the following information for each node in the given set d (lines 24-29):

– The index value
– The contained element
– The root element

To purchase the full version, visit cppdatastructures.com

197

– The rank (for root nodes only)

Note that the parameter d (line 12) is a non-const reference, which we need in order to call the
findRoot method (which modifies the structure of the set).

Our test program (main.cpp) begins by constructing a set of Traceable<char> and reserving a capacity
of 7 elements (lines 12-16). We then insert the elements {a, b, c, w, x, y, z}, each belonging to their
own subset, and print the entire structure (lines 18-25).

In lines 27-45, we replicate the earlier examples of _unionByRank. This time, however, we call
printDisjointSet after each union, which flattens the entire structure by calling findRoot on each node:

 index 0 1 2 3 4 5 6
 element(rank) a(0) b(0) c(0) w(0) x(0) y(0) z(0)

 (index element root rank):
 0 a a 0
 1 b b 0
 2 c c 0
 3 w w 0
 4 x x 0
 5 y y 0
 6 z z 0
__

 unionByRank(a, b); // unionByRank(*(p + 0), *(p + 1));

 a(1) c(0) w(0) x(0) y(0) z(0)
 |
 b

 printDisjointSet(); // no promotion

 (index element root rank):
 0 a a 1
 1 b a
 2 c c 0
 3 w w 0
 4 x x 0
 5 y y 0
 6 z z 0
__

 unionByRank(b, c); // unionByRank(*(p + 1), *(p + 2));

 a(1)__ w(0) x(0) y(0) z(0)
 | |
 b c

 printDisjointSet(); // no promotion

 // Continued on next page

To purchase the full version, visit cppdatastructures.com

198

 (index element root rank):
 0 a a 1
 1 b a
 2 c a
 3 w w 0
 4 x x 0
 5 y y 0
 6 z z 0
__

 unionByRank(w, x); // unionByRank(*(p + 3), *(p + 4));

 a(1)__ w(1) y(0) z(0)
 | | |
 b c x

 printDisjointSet(); // no promotion

 (index element root rank):
 0 a a 1
 1 b a
 2 c a
 3 w w 1
 4 x w
 5 y y 0
 6 z z 0
__

 unionByRank(y, z); // unionByRank(*(p + 5), *(p + 6));

 a(1)__ w(1) y(1)
 | | | |
 b c x z

 printDisjointSet(); // no promotion

 (index element root rank):
 0 a a 1
 1 b a
 2 c a
 3 w w 1
 4 x w
 5 y y 1
 6 z y
__

 unionByRank(x, z); // unionByRank(*(p + 4), *(p + 6));

 a(1)__ w(2)__
 | | | |
 b c x y
 |
 z

To purchase the full version, visit cppdatastructures.com

199

 printDisjointSet(); // promotes z

 a(1)__ w(2)_______
 | | | | |
 b c x y z

 (index element root rank):
 0 a a 1
 1 b a
 2 c a
 3 w w 2
 4 x w
 5 y w
 6 z w
__

 unionByRank(b, w); // unionByRank(*(p + 1), *(p + 3));

 ___w(2)_______
 | | | |
 ____a x y z
 | |
 b c

 printDisjointSet(); // promotes b and c

 _____________w(2)_______
 | | | | | |
 c b a x y z

 (index element root rank):
 0 a w
 1 b w
 2 c w
 3 w w 2
 4 x w
 5 y w
 6 z w
__

 ~ a
 ~ b
 ~ c
 ~ w
 ~ x
 ~ y
 ~ z

 All Traceables destroyed

To purchase the full version, visit cppdatastructures.com

