

From databases and operating systems to simulations and graphics, data structures are an integral
part of all programming domains. Designed for complete beginners as well as those with prior
programming experience, C++ Data Structures from Scratch, Vol. 1 covers everything, from basic
C++ language concepts, to creating fully functional, STL-style implementations of common data
structures and sorting algorithms.

Key features:

● 170+ complete source code files, with detailed line-by-line analysis and diagrams

● 60 sample programs directly illustrating key concepts from each chapter

● Free sample content and online support at the official website, cppdatastructures.com

Major topics:

● Step-by-step instructions for setting up an IDE (integrated development environment)

● Thorough coverage of fundamental C++ language concepts:

● Datatypes, variables, and arithmetic
● Logic, functions, and program structure
● Pointers, arrays, and references
● Object-oriented programming (classes) and operator overloading
● Template metaprogramming, in the style of the Standard Template Library (STL)
● Dynamic memory allocation

● A comprehensive, line-by-line guide to implementing:

● Bubble sort, insertion sort, and quicksort
● Allocators
● Dynamic arrays (STL vector)
● Doubly-linked lists (STL list)
● Single-block deques (double-ended queues)
● Multi-block deques (STL deque)
● Non-balancing binary search trees
● AVL (self-balancing) trees (STL map)
● Bidirectional / random access, const, and reverse iterators for each data structure

About the author:

● Robert MacGregor is the developer of a C++ API for financial market trading systems. He is
also a CTA (Commodity Trading Advisor) in the National Futures
Association, and a Chartered Market Technician in the CMT
Association.

Cover illustration: SelfSimilarCircuitry by Mark J. Brady (markjaybeefractal.com)

C++ Data Structures from
Scratch, Vol. 1

Robert MacGregor

To purchase the full version, visit cppdatastructures.com

Copyright 2023 by Robert MacGregor. All rights reserved.

No part of this book may be reproduced or transmitted by any means without the prior written consent of the
author.

Although every precaution has been taken to verify the accuracy of the information contained herein, the author
and publisher assume no responsibility for errors or omissions. Furthermore, no liability is assumed for any
damages resulting from the use of the information or programs contained herein.

Published by South Coast Books

For errata, supplementary material, and contact / purchase information, visit www.cppdatastructures.com

Cover illustration: SelfSimilarCircuitry by Mark J. Brady (www.markjaybeefractal.com)

ISBN-10: 0-9962115-8-6
ISBN-13: 978-0-9962115-8-1

1st Printing, November 2023

To purchase the full version, visit cppdatastructures.com

Dedicated to Milagros “Mila” Oronce Reyes
(1935-2014)

To purchase the full version, visit cppdatastructures.com

To purchase the full version, visit cppdatastructures.com

Table of Contents

Introduction and Getting Started

Part 1: Creating Our First Program

1.1: Setting Up a Development Environment 1
1.2: Obtaining the Required Source Code 3
1.3: Standard Output, Variables, and Datatypes 5

Part 2: Arithmetic Operations and User Input

2.1: Basic Arithmetic 11
2.2: Standard Input 13
2.3: Increment Operator 15
2.4: Decrement Operator 19
2.5: Compound Assignment Operators 23

Part 3: Control Flow

3.1: Relational Operators and Conditional Statements 27
3.2: Logical Operators 33
3.3: Loops 37
3.4: Boolean Variables 47
3.5: Putting It All Together 49

Part 4: Functions and Scope

4.1: Functions 53
4.2: Namespaces 57
4.3: Lifetime, Visibility, and Scope 63
4.4: Function Overloading 69
4.5: Header Files and Inline Functions 71

Part 5: Pointers, Arrays, and References

5.1: Pointers 75
5.2: Pass by Reference 81
5.3: Arrays and Bubble Sort 83
5.4: Pointer Arithmetic 91
5.5: References 103
5.6: Const Correctness and Insertion Sort 109

To purchase the full version, visit cppdatastructures.com

Part 6: Classes and Operator Overloading

6.1: Classes 121
6.2: Operator Overloading 129

Part 7: Templates and Function Objects

7.1: Function Templates 143
7.2: Class Templates and Function Objects 151
7.3: Introducing the Array Class and Quicksort 163

Part 8: Dynamic Memory Allocation

8.1: Tracing the Lifetime of an Object 177
8.2: Introducing the Allocator Class 183

Part 9: Dynamic Arrays

9.1: Introducing the Vector Class 189
9.2: Implementing reserve, pop_back, Copy, and Assignment 199
9.3: Implementing insert and erase 207

Part 10: Linked Lists

10.1: Introducing the List Class 215
10.2: Implementing pop_front, pop_back, and clear 225
10.3: Implementing an Iterator 231
10.4: Implementing a Const Iterator 239
10.5: Copy and Assignment 247
10.6: Implementing insert and erase 253

Part 11: Reverse Iterators

11.1: Introducing the ReverseIter Class 261
11.2: Implementing rbegin and rend for Array and Vector 267

Part 12: Single-Block Double-Ended Queues

12.1: Introducing the Ring Class 277
12.2: Implementing push_front and Random Access 287
12.3: Implementing pop_front, pop_back, and clear 293
12.4: Implementing the Iterators 299
12.5: Copy, Assignment, insert, and erase 305

To purchase the full version, visit cppdatastructures.com

Part 13: Multi-Block Double-Ended Queues

13.1: Introducing the MultiRing Class 313
13.2: Implementing push_front and Random Access 321
13.3: Implementing the Iterators, pop_front, pop_back, and clear 327
13.4: Copy, Assignment, insert, and erase 329

Part 14: Non-Balancing Binary Search Trees

14.1: Key-Mapped Pairs 331
14.2: Implementing the Nodes 341
14.3: Introducing the DemoBinaryTree Class 347
14.4: Recursive In-Order Traversal 351
14.5: Iterative In-Order Traversal 357
14.6: Implementing the Iterators 363
14.7: Searching for an Element by Key Value 367
14.8: Introducing the BinaryTree Class 371
14.9: Implementing insert 375
14.10: Implementing erase 389
14.11: Implementing clear, Copy, and Assignment 405

Part 15: Self-Balancing Binary Search Trees

15.1: Rotating Nodes 411
15.2: Introducing the AvlTree Class 431
15.3: Implementing insert 435
15.4: Implementing erase 463

Part 16: Time Complexity

16.1: Big O Notation 489
16.2: Function Overloading by iterator_category 493

Appendix: Standard Library Equivalents 499

Index 501

To purchase the full version, visit cppdatastructures.com

To purchase the full version, visit cppdatastructures.com

Introduction and Getting Started

Chapter outline

– What are data structures, and why do we need to know how they work?
– Who this book is for
– A brief overview of the major topics

The manipulation of data is a fundamental task performed by nearly all types of software. An address
book application, for example, alphabetically sorts names, while a web browser maintains a
chronological history of visited sites. A data structure is a software component that stores and
organizes a set of data.

Although different types of data structures can perform many of the same tasks, they do so with
varying degrees of efficiency. By knowing how data structures work, we can better understand their
relative strengths and weaknesses, thereby helping us design more effective software.

No prior programming experience is required for this book. We'll begin by setting up the software
required to create C++ programs, and introducing the most basic building blocks of the language. By
mastering the material herein, you'll acquire a strong foundation in data structures and C++, as well as
a solid conceptual framework for programming in a wide variety of languages and domains.

Here's a brief overview of what we'll cover in Volume 1:

In Part 1, we'll set up a development environment (software used to create C++ programs), and obtain
the required source code for all of the programs in this book. We'll then create our first program,
introducing variables and datatypes.

In Part 2, we'll cover basic arithmetic operations, such as addition, subtraction, multiplication, and
division.

In Part 3, we'll introduce basic tools for managing control flow, the order in which a program performs
its instructions.

In Part 4, we'll introduce basic tools for organizing and reusing source code, such as functions,
namespaces, and header files.

In Part 5, we'll introduce the concept of indirection, covering pointers, arrays, and references. To
demonstrate these tools, we'll implement the bubble sort and insertion sort algorithms.

In Part 6, we'll introduce object-oriented programming, classes, and operator overloading.

In Part 7, we'll introduce template metaprogramming and function objects. We'll also implement the
quicksort algorithm, introducing the concept of recursion.

In Part 8, we'll introduce dynamic memory allocation, completing the foundation for Parts 9-15.

To purchase the full version, visit cppdatastructures.com

In Parts 9-15, we'll implement a fully-functional set of common data structures:

– Dynamic array (STL vector)
– Doubly-linked list (STL list)
– Single-block deque (double-ended queue)
– Multi-block deque (STL deque)
– Non-balancing binary search tree
– AVL tree (self-balancing binary search tree) (STL map)

For each of these data structures, we'll also implement the applicable iterators (bidirectional / random
access, const, and reverse).

In Part 16, we'll introduce the concept of time complexity, and demonstrate how to optimize a single
function for multiple types of iterators.

To purchase the full version, visit cppdatastructures.com

C++ Data Structures from
Scratch, Vol. 1

To purchase the full version, visit cppdatastructures.com

To purchase the full version, visit cppdatastructures.com

1

Part 1: Creating Our First Program

1.1: Setting Up a Development Environment

Chapter outline

– Obtaining and setting up the tools required to create C++ programs

Creating a C++ program requires three tools: a word processor, compiler, and linker.

A word processor is a program used to edit plain text (.txt) files, such as Microsoft Notepad or
Notepad++. We use the word processor to write source code, a set of plain text files with the
extensions .h and .cpp. The source code, written in C++, contains the instructions to be performed by
our program.

Computers, however, don't natively understand the C++ language; the source code must be translated
into object code (.obj files). Object code is written in machine language, the native instruction set of
the CPU (central processing unit / microchip). To perform this translation, we use a program called a
compiler.

Finally, we use a program called a linker, which combines the various object (.obj) files into a single
executable (.exe file). The executable is our finished program, which we can run from the command
line or desktop.

The following diagram summarizes the entire process:

 Source Code (.h and .cpp files, written in C++)
 |
 | (Compilation)
 ˅
 Object Code (.obj files, written in machine language)
 |
 | (Linking)
 ˅
 Executable (.exe file, finished program)

Rather than use a separate program for each step, we can streamline the process by using an IDE
(integrated development environment). An IDE is a single program that combines the functionality of
a word processor, compiler, and linker. This allows us to write source code, then generate the
executable with a single click.

To download, install, and set up the IDE, follow the instructions at www.cppdatastructures.com
before proceeding.

To purchase the full version, visit cppdatastructures.com

2

To purchase the full version, visit cppdatastructures.com

3

1.2: Obtaining the Required Source Code

Chapter outline

– Obtaining the required source code for all of the programs in this book
– How to use the source code listing for each chapter
– Recommended study approach

Each chapter of this book is a line-by-line walk-through of a small program, designed to illustrate the
key concepts as simply and directly as possible.

To obtain the source code for all of these programs, visit www.cppdatastructures.com before
proceeding.

The relevant source files and / or folders are listed at the beginning of each chapter. The root folder
(dss) is omitted. If a folder is listed without specific filenames, it indicates that the chapter uses all of
the files in that folder. The listing for Chapter 5.2, for example,

Source files and folders

– passByReference
– swapInts

indicates that Chapter 5.2 uses:

– All of the files in the folder dss/passByReference
– All of the files in the folder dss/swapInts

Similarly, the listing for Chapter 7.3,

Source files and folders

– Array/1
– Array/common/memberFunctions_1.h
– quickSort

indicates that Chapter 7.3 uses:

– All of the files in the folder dss/Array/1
– The file dss/Array/common/memberFunctions_1.h
– All of the files in the folder dss/quickSort

The recommended study approach is as follows:

To purchase the full version, visit cppdatastructures.com

4

– At the beginning of each chapter, compile the included source code and run the program.
– Read the chapter, following along with the included source code.
– Read the chapter again, duplicating the included source code from scratch.
– Compile the duplicated source code and run the program, verifying that you've achieved the

same result.

To purchase the full version, visit cppdatastructures.com

5

1.3: Standard Output, Variables, and Datatypes

Source files and folders

– hello

Chapter outline

– Generating an executable
– Displaying messages on the screen
– Using variables to store and modify values
– Basic datatypes: integers, real numbers, booleans, and character strings

Our first program will introduce some basic building blocks of the C++ language. Before analyzing
the source code, however, we'll generate and run the executable. This will allow us to view the source
code and its results, side-by-side.

For instructions on how to generate an executable, visit www.cppdatastructures.com before
proceeding.

Now that we've run the program, let's examine the source code. Line 4 of main.cpp,

 int main()

specifies a function called main. A function, also called a subroutine or method, is a named set of
instructions, or statements.

A function's statements are collectively referred to as the function body, which is enclosed in curly
braces ({ }). The opening and closing braces of main are located at lines 5 and 36, respectively. When
the program is run, the system calls (executes) the function main, running through each statement in
the body (lines 6-35).

The type of output value generated by a function is called its return type. The return type of main is int
(line 4), which is short for integer. This indicates that, upon completion, main returns an integer value
to the function caller (the executor of the function). Line 8,

 cout << "Hello" << endl;

displays the message

 Hello

on the screen, where

– cout (pronounced "C out") is the standard output stream, used to display messages.

To purchase the full version, visit cppdatastructures.com

6

– << is the stream insertion operator, used to indicate what we want to display.

– endl (pronounced "end L") is short for "end line." This represents a carriage return, a special
character used to indicate the end of the current line. An endl, in other words, indicates that
the next message displayed will begin on a new line.

The entire statement (“C out Hello, end L”) thus inserts the character string Hello into the standard
output stream, followed by a carriage return. The semicolon following endl indicates the end of the
statement.

A variable is a value that we can refer to by name. Lines 10-14,

 int i = 0;
 double d = 3.14;
 bool b = true;
 char c = '?';
 string s = "Independence Day";

declare and initialize the variables

– i, of type int (integer), initialized to 0
– d, of type double (real number), initialized to 3.14
– b, of type bool (boolean, true-or-false value), initialized to true
– c, of type char (single character), initialized to ?
– s, of type string (character string), initialized to Independence Day

Note that values of type char must be enclosed in single-quotation marks (line 13). Values of type
string must be enclosed in double-quotation marks (line 14). Line 16,

 cout << "i is " << i << endl;

prints the character string "i is ", followed by the current value of i, followed by a carriage return,
generating the output

 i is 0

Similarly, lines 17-20,

 cout << "d is " << d << endl;
 cout << "b is " << b << endl;
 cout << "c is " << c << endl;
 cout << "s is " << s << endl << endl;

generate the output

 d is 3.14
 b is 1
 c is ?

To purchase the full version, visit cppdatastructures.com

7

 s is Independence Day

Note that, when using cout to print values of type bool (as in line 18), true and false are displayed as
the integer values 1 and 0, respectively. In lines 22-26,

 i = 9;
 d = 2.71;
 b = false;
 c = '!';
 s = "July 4th, 1776";

we assign a new value to each variable. The equal sign (=) is called the assignment operator. Once
again, note that we use single-quotation marks for values of type char (line 25), and double-quotation
marks for values of type string (line 26). Lines 28-32,

 cout << "i is " << i << endl;
 cout << "d is " << d << endl;
 cout << "b is " << b << endl;
 cout << "c is " << c << endl;
 cout << "s is " << s << endl;

print the value of each variable once more. The corresponding output,

 i is 9
 d is 2.71
 b is 0
 c is !
 s is July 4th, 1776

reflects the new values. Line 33,

 cout << "Goodbye\n";

is equivalent to

 cout << "Goodbye" << endl;

where \n is a special single-character value, representing a carriage return. It can be used as part of a
character string, or as a single-character value. Given the values

 string k = “ice\ncream\ncone\n”;
 char p = '\n';

for example, the statements

 cout << k;
 cout << “ice” << p << “cream” << p << “cone” << p;

generate the output

To purchase the full version, visit cppdatastructures.com

8

 ice
 cream
 cone
 ice
 cream
 cone

As mentioned earlier, the return type of main is int (line 4). We must therefore terminate main by
returning an integer value to the caller. Line 35,

 return 0;

terminates main, returning a value of 0. Line 38,

 // single-line comment

demonstrates the syntax of a single-line comment. A comment is a portion of text to be ignored by the
compiler, used to further explain or document the code. All text following a pair of forward slashes (//)
to the end of the line will be ignored by the compiler. Lines 40-43,

 /*
 multiple-line
 comment
 */

demonstrate the syntax of a multiple-line comment. In this case, the compiler ignores all text from
the /* to the */.

cout, endl, and the string type are provided by the C++ Standard Library, a uniform set of tools often
included with compilers and IDEs. In order to use Standard Library components, the appropriate
header files must be included. Lines 1-2,

 #include <iostream>
 #include <string>

are include directives. Before compilation, a separate program, called the preprocessor, replaces each
include directive with the text of the specified file, as if we had written it ourselves. In this case, the
preprocessor inserts the text of <iostream> at line 1, followed by the the text of <string>. The
<iostream> header provides cout and endl, while the <string> header provides the string type.

The statement in line 6,

 using namespace std;

is a using directive. Without this statement, we would've had to write every instance of cout, endl, and
string (lines 8, 14, 16-20, 28-33) as std::cout, std::endl, and std::string. Lines 8 and 14, for example,
would've had to be written as

 std::cout << “Hello” << std::endl;

To purchase the full version, visit cppdatastructures.com

9

 std::string s = “Independence Day”;

We'll discuss the meaning of namespace and std in Part 4. For now, all you need to know is that the
statement

 using namespace std;

allows us to omit the std:: when referring to Standard Library components, such as cout, endl, and
string.

Before moving on, there's an additional point to note regarding variables. We can declare a variable,
without initializing it to a specific value. We could have, for example, written lines 10-14 as

 int i;
 double d;
 bool b;
 char c;
 string s;

In this case, the initial values of i, d, b, and c would be random, while the initial value of s would be
empty string (a string containing zero characters). More generally speaking, when declaring a variable
v without specifying its value,

– If v is an int, double, bool, or char, then v will be initialized to a random value.
– If v is a string, then v will be initialized as an empty string.

To purchase the full version, visit cppdatastructures.com

10

To purchase the full version, visit cppdatastructures.com

11

Part 2: Arithmetic Operations and User Input

2.1: Basic Arithmetic

Source files and folders

– basicArithmetic

Chapter outline

– Performing addition, subtraction, multiplication, and division
– Calculating a remainder using modulus division

In this chapter, we'll demonstrate how to perform some basic arithmetic. Our program (main.cpp)
begins by initializing an integer a to a value of 1 (line 7). The next statement (line 8)

 int b = a + 2;

then initializes another integer b, to the value of (a + 2). The current value of a is 1, so the expression

 a + 2

returns (evaluates to) 3, which is then assigned to b. The plus sign (+) is called the addition operator.
We then print the values of a and b (lines 10-11), generating the output

 a = 1
 b = 3

In line 13, the statement

 a = 7 – b;

sets the value of a to (7 – b). The current value of b is 3, so the expression

 7 – b

returns 4, which is then assigned to a. The minus sign (–) is called the subtraction operator. In lines
15-16, we print the values of a and b, generating the output

 a = 4
 b = 3

The statement in line 18,

 b = a * 3;

To purchase the full version, visit cppdatastructures.com

12

sets the value of b to (a * 3). The current value of a is 4, so the expression

 a * 3

returns 12, which is then assigned to b. The asterisk (*) is called the multiplication operator. In lines
20-21, we print the values of a and b, generating the output

 a = 4
 b = 12

In line 23, the statement

 a = b / 4;

sets the value of a to (b / 4). The current value of b is 12, so the expression

 b / 4

returns 3. The forward slash (/) is called the division operator. In lines 25-26, we print the values of a
and b, generating the output

 a = 3
 b = 12

In line 28, the statement

 b = a % 2;

sets the value of b to (a % 2). The percent sign (%) is called the modulo operator. The modulo
operator performs modulus division, which finds the remainder when dividing one value by another.
The current value of a is 3, so the expression

 a % 2

returns the remainder of (a / 2), which is 1. This value is then assigned to b. In lines 30-31, we print
the values of a and b once more, generating the output

 a = 3
 b = 1

To demonstrate another example of modulus division, we'll use the expression

 27 % 8

which returns the remainder of (27 / 8). When dividing 27 by 8, the remainder is 4, so the expression
(27 % 8) returns 4.

To purchase the full version, visit cppdatastructures.com

13

2.2: Standard Input

Source files and folders

– standardInput

Chapter outline

– Obtaining user input

Our program (main.cpp) begins by declaring two strings, firstName and lastName (lines 8-9), and an
int age (line 10). We then display the message (line 12)

 Please enter your first name:

Line 13,

 cin >> firstName;

prompts the user to enter a string value, and assigns it to the variable firstName, where

– cin (pronounced “C in”) is the standard input stream, which obtains input from the user.
– >> is the stream extraction operator, used to specify the destination.

The entire statement (“C in, firstname”) thus extracts data from the standard input stream and writes it
to the variable firstName.

cin, like cout, is provided by the <iostream> header, which we've included in line 1.

We then ask the user for their last name and age. To do so, we begin by displaying the message (line
15)

 Please enter your last name and age (separated by whitespace):

Used singularly, the term whitespace refers to a single empty space; plurally, it refers to a sequence of
empty spaces. In the above message, we're therefore asking the user to separate their last name and
age with one or more spaces.

Line 16,

 cin >> lastName >> age;

prompts the user to enter a string and an int (separated by whitespace), and assigns them to lastName
and age. This demonstrates how we can obtain multiple input values in a single statement, by writing
>> before each destination variable.

To purchase the full version, visit cppdatastructures.com

14

Now that we've obtained the values for firstName, lastName, and age, we can perform some operations
with the data. Line 18,

 cout << "\nHello, " << firstName << " " << lastName << ".\n";

displays the message

 Hello, <firstName> <lastName>.

where <firstName> and <lastName> will be the values of firstName and lastName respectively. This
demonstrates how, when using cout, we can print multiple items in a single statement. Recall from
Chapter 1.3 that \n is a special character, used to represent a carriage return. The expression (line 18)

 cout << "\nHello, "

is therefore equivalent to

 cout << endl << "Hello, "

The third item that we print in line 18 (after firstName),

 " "

is a character string consisting of a single whitespace, which separates the values of firstName and
lastName in the displayed message.

Line 19,

 cout << "In 5 years, you will be " << age + 5 << " years old.\n";

generates the output

 In 5 years, you will be <age + 5> years old.

where <age + 5> will be the value of (age + 5).

Given the values Alex, Turner, and 37, for example, our program generates the output

 Please enter your first name: Alex
 Please enter your last name and age (separated by whitespace): Turner 37

 Hello, Alex Turner.
 In 5 years, you will be 42 years old.

To purchase the full version, visit cppdatastructures.com

15

2.3: Increment Operator

Source files and folders

– incrementOperator

Chapter outline

– Prefix vs. postfix increment

Incrementing a variable is the process of increasing its value by a given amount. Given

 int x = 5;

for example, we can increment x by 1 via the statement

 x = x + 1;

The current value of x is 5, so the expression

 x + 1

returns 6, which is then assigned as the new value of x. Similarly, given

 int y = 7;

we can increment y by 2 via the statement

 y = y + 2;

The current value of y is 7, so the expression

 y + 2

returns 9, which is then assigned as the new value of y.

Incrementing a variable by 1, as shown in the first example, is such a common operation that C++
provides a shorthand way of doing so. Our program (main.cpp) will demonstrate this.

We begin by initializing two ints, a and b, to 7 and 3 respectively (lines 7-11). We then print the values
of a and b (lines 13-14), generating the output

 a = 7
 b = 3

In line 16, the statement

To purchase the full version, visit cppdatastructures.com

16

 ++a;

increments a by 1 (from 7 to 8), and is equivalent to

 a = a + 1;

The ++ is called the increment operator, which increments a variable by 1. When the ++ appears
before the target variable (as in line 16), it's called the prefix increment operator. After incrementing a,
we print its new value (line 17), generating the output

 a = 8

Line 19,

 b = ++a;

demonstrates how the prefix increment operator behaves within a longer statement. In this statement,
the expression

 ++a

increments a by 1 (from 8 to 9), and returns the new value of a (9), which we then assign to b. The
value of b thus becomes 9. Printing the new values of a and b (lines 20-21) generates the output

 a = 9
 b = 9

When the ++ appears after the target variable, it's called the postfix increment operator. The statement
in line 23, for example,

 a++;

increments a by 1 (from 9 to 10). Printing the new value of a (line 24) generates the output

 a = 10

Line 26,

 b = a++;

demonstrates how the postfix increment operator behaves within a longer statement. In this statement,
the expression

 a++

increments a by 1 (from 10 to 11), and returns the original value of a (10), which we then assign to b.
The value of b thus becomes 10. Printing the new values of a and b (lines 27-28) generates the output

 a = 11

To purchase the full version, visit cppdatastructures.com

17

 b = 10

Before moving on, it's worth reiterating the key difference between prefix and postfix increment:

– A prefix increment expression, such as (++k), increments k, and returns the new (incremented)
value of k.

– A postfix increment expression, such as (k++), increments k, and returns the original (pre-
increment) value of k.

The statement (line 19)

 b = ++a;

for example, increments a, and sets b to the new (incremented) value of a. Conversely, the statement
(line 26)

 b = a++;

increments a, and sets b to the original (pre-increment) value of a. In both statements, the value of a
increases by 1.

The complete output of our program (main.cpp) is

 a = 7 // Initial values of a and b
 b = 3

 a = 8 // Result of ++a;

 a = 9 // Result of b = ++a;
 b = 9

 a = 10 // Result of a++;

 a = 11 // Result of b = a++;
 b = 10

Knowing the subtle difference between prefix and postfix increment allows us to write more concise
code. The statement (line 16)

 b = ++a;

for example, is a shorthand way of writing

 ++a;
 b = a;

Similarly, the statement (line 26)

To purchase the full version, visit cppdatastructures.com

18

 b = a++;

is a shorthand way of writing

 b = a;
 a++;

Statements such as

 b = ++a;
 b = a++;

however, are more difficult to understand than their long-form counterparts. We'll therefore favor the
long-form versions throughout this book.

As a sidenote, the increment operator provides some insight into the name of the C++ language. The
++ represents the fact that C++, created by Bjarne Stroustrup in 1982, is an extension of C, a language
created by Dennis Ritchie in 1972.

To purchase the full version, visit cppdatastructures.com

19

2.4: Decrement Operator

Source files and folders

– decrementOperator

Chapter outline

– Prefix vs. postfix decrement

Decrementing a variable is the process of decreasing its value by a given amount. Given

 int x = 5;

for example, we can decrement x by 1 via the statement

 x = x - 1;

which sets x to 4. Similarly, given

 int y = 7;

we can decrement y by 2 via the statement

 y = y - 2;

which sets y to 5.

Given

 int k = 3;

the statement

 --k;

is equivalent to

 k = k – 1;

The – – is called the decrement operator, which decrements a variable by 1. The decrement operator
follows the same pattern as the increment operator:

– When the – – appears before the target variable (– –k), it's called the prefix decrement operator.

– When the – – appears after the target variable (k– –), it's called the postfix decrement operator.

To purchase the full version, visit cppdatastructures.com

20

– A prefix decrement expression, such as (– –k), decrements k, and returns the new
(decremented) value of k.

– A postfix decrement expression, such as (k– –), decrements k, and returns the original (pre-
decrement) value of k.

Our program (main.cpp) begins by initializing two integers, a and b, to 9 and 5 respectively (lines 7-8).

Line 13,

 --a;

decrements a by 1 (from 9 to 8). After printing the new value of a (line 14), the statement (line 16)

 b = --a;

decrements a by 1 (from 8 to 7), and sets b to the new value of a (7). After printing the new values of
a and b (lines 17-18), the statement (line 20)

 a--;

decrements a by 1 (from 7 to 6). After printing the new value of a (line 21), the statement (line 23)

 b = a--;

decrements a by 1 (from 6 to 5), and sets b to the original value of a (6). We then print the new values
of a and b once more (lines 24-25).

The complete output of our program (main.cpp) is

 a = 9 // Initial values of a and b
 b = 5

 a = 8 // Result of --a;

 a = 7 // Result of b = --a;
 b = 7

 a = 6 // Result of a--;

 a = 5 // Result of b = a--;
 b = 6

The statement (line 16)

 b = --a;

is shorthand for

To purchase the full version, visit cppdatastructures.com

21

 --a;
 b = a;

Similarly, the statement (line 23)

 b = a--;

is shorthand for

 b = a;
 a--;

As discussed in the previous chapter, statements such as

 b = --a;
 b = a--;

are more difficult to understand than their long-form counterparts. We'll therefore favor the long-form
versions throughout this book.

To purchase the full version, visit cppdatastructures.com

22

To purchase the full version, visit cppdatastructures.com

23

2.5: Compound Assignment Operators

Source files and folders

– compoundAssignment

Chapter outline

– Modifying variables using the compound assignment operators (addition, subtraction,
multiplication, division, and modulo)

Given (main.cpp, lines 7-8)

 int a = 3;
 int b = 5;

the statement (line 12)

 a += 8; // Increment the value of a by 8 (from 3 to 11)

is shorthand for

 a = a + 8;

The += is called the addition assignment operator, which increments a variable by a given amount.

An addition assignment expression returns the target variable. The statement (line 15)

 b = (a += 8); // Increment the value of a by 8 (from 11 to 19),
 // then set the value of b to the value of a (19)

for example, is equivalent to

 a += 8;
 b = a;

The statement (line 18)

 a -= 4; // Decrement the value of a by 4 (from 19 to 15)

is shorthand for

 a = a - 4;

The – = is called the subtraction assignment operator, which decrements a variable by a given amount.

A subtraction assignment expression returns the target variable. The statement (line 21)

To purchase the full version, visit cppdatastructures.com

24

 b = (a -= 4); // Decrement the value of a by 4 (from 15 to 11),
 // then set b to the value of a (11)

for example, is equivalent to

 a -= 4;
 b = a;

The statement (line 24)

 a *= 3; // Multiply the value of a by 3 (from 11 to 33)

is shorthand for

 a = a * 3;

The *= is called the multiplication assignment operator, which multiplies a variable by a given value.

A multiplication assignment expression returns the target variable. The statement (line 27)

 b = (a *= 3); // Multiply the value of a by 3 (from 33 to 99),
 // then set b to the value of a (99)

for example, is equivalent to

 a *= 3;
 b = a;

The statement (line 30)

 a /= 3; // Divide the value of a by 3 (from 99 to 33)

is equivalent to

 a = a / 3;

The /= is called the division assignment operator, which divides a variable by a given value.

A division assignment expression returns the target variable. The statement (line 33)

 b = (a /= 3); // Divide the value of a by 3 (from 33 to 11),
 // then set b to the value of a (11)

for example, is equivalent to

 a /= 3;
 b = a;

The statement (line 36)

To purchase the full version, visit cppdatastructures.com

25

 a %= 4; // Calculate (a % 4) (the remainder of a / 4, which is 3),
 // then set the value of a to the result (3)

is shorthand for

 a = a % 4;

The %= is called the modulo assignment operator, which modulus divides a variable by a given
amount.

A modulo assignment expression returns the target variable. The statement (line 39)

 b = (a %= 2); // Calculate (a % 2) (the remainder of a / 2, which is 1),
 // set the value of a to the result (1),
 // then set the value of b to the value of a (1)

for example, is equivalent to

 a %= 2;
 b = a;

For the sake of simplicity, we'll avoid writing statements such as

 b = (a += 8);

in favor of their long-form counterparts,

 a += 8;
 b = a;

Our program (main.cpp) generates the output

 a = 3, b = 5
 a = 11 // Result of a += 8;
 a = 19, b = 19 // Result of b = (a += 8);
 a = 15 // Result of a -= 4;
 a = 11, b = 11 // Result of b = (a -= 4);
 a = 33 // Result of a *= 3;
 a = 99, b = 99 // Result of b = (a *= 3);
 a = 33 // Result of a /= 3;
 a = 11, b = 11 // Result of b = (a /= 3);
 a = 3 // Result of a %= 4;
 a = 1, b = 1 // Result of b = (a %= 2);

To purchase the full version, visit cppdatastructures.com

26

To purchase the full version, visit cppdatastructures.com

27

Part 3: Control Flow

3.1: Relational Operators and Conditional Statements

Source files and folders

– conditionalStatements

Chapter outline

– Comparing values using the relational operators
– Controlling program behavior using the if and else keywords

In this section, we'll introduce some basic tools for managing control flow, the order in which
statements are executed.

Our program (main.cpp) begins by prompting the user for an integer value, which we store as the
variable x (lines 7-10). Lines 12-15,

 if (x == 0)
 {
 cout << "You entered 0\n";
 }

can be read as “If the value of x is 0, print You entered 0.” This is an example of an if statement. An if
statement is a body of statements to be run, if and only if the given condition is true. The condition is
an expression that returns a boolean (true-or-false) value. In this case, the condition is the expression

 x == 0

which returns true if the value of x is 0, or false if the value of x isn't 0. The pair of equal signs (= =) is
the equal to operator, which checks whether the left operand (x) is equal to the right operand (0). The
body is (line 14)

 cout << “You entered 0\n”;

If the body consists of a single statement, as it does here, we can omit the opening and closing braces
(lines 13, 15). We could therefore write lines 12-15 as

 if (x == 0)
 cout << "You entered 0\n";

The syntax of an if statement is thus

 // Continued on next page

To purchase the full version, visit cppdatastructures.com

28

 if (condition)
 {
 body
 }

Lines 17-20,

 if (x % 2 == 0)
 cout << "You entered an even number\n";
 else
 cout << "You entered an odd number\n";

can be read as “If the remainder of (x / 2) is 0, print You entered an even number; otherwise, print You
entered an odd number.” This is an example of an if-else statement, which uses the syntax

 if (condition)
 {
 body
 }
 else
 {
 alternative body
 }

If the condition is true, the body will be run; if the condition is false, the alternative body will be run.
In this case, the condition is the expression

 x % 2 == 0

where (x % 2) returns the remainder of (x / 2). Because x is an integer, (x % 2) will either be 0 or 1.

– If (x % 2) is 0, then (x % 2 == 0) will be true, and the body (line 18) will be run.
– If (x % 2) is 1, then (x % 2 == 0) will be false, and the alternative body (line 20) will be run.

Lines 22-27,

 if (x > 0)
 cout << "You entered a positive number\n";
 else if (x < 0)
 cout << "You entered a negative number\n";
 else
 cout << "The number you entered is neither positive nor negative\n";

can be read as “If x is greater than 0, print You entered a positive number. Otherwise, if x is less than 0,
print You entered a negative number. Otherwise, print The number you entered is neither positive nor
negative.”

The > symbol is the greater than operator, which checks whether the left operand (x) is greater than
the right operand (0). The < symbol is the less than operator, which checks whether the left operand is
less than the right.

To purchase the full version, visit cppdatastructures.com

29

Lines 22-27 are an example of an if-else if statement, which uses the syntax

 if (condition 1)
 {
 body 1
 }
 else if (condition 2)
 {
 body 2
 }
 else
 {
 body 3
 }

We can depict the above syntax using a flow chart:

 Check condition 1 _____
 | |
 ˅ ˅
 True False
 | |
 ˅ ˅
 Run body 1 Check condition 2 _____
 | |
 ˅ ˅
 True False
 | |
 ˅ ˅
 Run body 2 Run body 3

The logic of lines 22-27 can thus be depicted as

 Check (x > 0) _________
 | |
 ˅ ˅
 True False
 | |
 ˅ ˅
 Print "positive" Check (x < 0) _________
 | |
 ˅ ˅
 True False
 | |
 ˅ ˅
 Print "negative" Print "neither positive nor
 negative"

In lines 29-35,

 // Continued on next page

To purchase the full version, visit cppdatastructures.com

30

 if (x > 15)
 {
 if (x < 20)
 cout << "You entered a number greater than 15 but less than 20\n";
 else
 cout << "You entered a number greater than both 15 and 19\n";
 }

we check whether x is greater than 15. If it is, we then check whether x is also less than 20. Once
again, we can depict the logic using a flowchart:

 Check (x > 15) __
 | |
 ˅ ˅
 True False
 |
 ˅
 Check (x < 20) _______________
 | |
 ˅ ˅
 True False
 | |
 ˅ ˅
 Print "greater than 15 Print "greater than both 15 and 19"
 but less than 20"

These types of statements (if, if-else, if-else if) are collectively known as conditional statements, or
conditionals. A nested conditional statement, or nested conditional, is a conditional that exists within
the body of another conditional. The if-else statement in lines 31-34, for example, is a nested
conditional, as it exists within the body of another conditional (the if statement beginning in line 29).

Given the values 0, 17, -8, and 25, our program generates the output

 Enter a number (integer): 0
 You entered 0
 You entered an even number
 The number you entered is neither positive nor negative
__

 Enter a number (integer): 17
 You entered an odd number
 You entered a positive number
 You entered a number greater than 15 but less than 20
__

 Enter a number (integer): -8
 You entered an even number
 You entered a negative number
__

 Enter a number (integer): 25
 You entered an odd number

To purchase the full version, visit cppdatastructures.com

31

 You entered a positive number
 You entered a number greater than both 15 and 19

An if-else if statement can contain any number of else if clauses, and need not contain a final else
clause. We could, for example, write

 if (x == 1)
 cout << “x is 1\n”;
 else if (x == 2)
 cout << “x is 2\n”;
 else if (x == 3)
 cout << “x is 3\n”;

In this case, if x isn't 1, 2, or 3, then no message will be printed:

 Check (x == 1) _____
 | |
 ˅ ˅
 True False
 | |
 ˅ ˅
 Print "x is 1" Check (x == 2) _____
 | |
 ˅ ˅
 True False
 | |
 ˅ ˅
 Print "x is 2" Check (x == 3) _____
 | |
 ˅ ˅
 True False
 |
 ˅
 Print "x is 3"

Finally, the comparison operators (>, <, etc.) are also known as the relational operators, summarized
in the following table:

 Given two operands, left (L) and
 Symbol Name right (R), returns true if
 __

 == Equal to L is equal to R
 != Not equal to L is not equal to R

 < Less than L is less than R
 > Greater than L is greater than R

 <= Less than or equal to L is less than or equal to R
 >= Greater than or equal to L is greater than or equal to R

To purchase the full version, visit cppdatastructures.com

32

To purchase the full version, visit cppdatastructures.com

33

3.2: Logical Operators

Source files and folders

– logicalOperators

Chapter outline

– Using the logical operators to form compound boolean expressions

A boolean expression is an expression that returns a boolean (true / false) value, such as

 x > 0 // Return true if x is greater than 0 (otherwise, return false)
 x < 10 // Return true if x is less than 10 (otherwise, return false)

A compound boolean expression is a multi-part boolean expression. To form a compound boolean
expression, we combine two or more boolean expressions, using a logical operator. The three logical
operators are and (&&), or (||), and not (!).

To demonstrate this, our program (main.cpp) begins by prompting the user for an integer value, and
storing it as the variable x (lines 7-10). We then check whether x is greater than 0 and less than 10 (line
12), via the expression

 x > 0 && x < 10

The pair of ampersands (&&) is the and operator, which returns true if and only if the left and right
operands are both true. In this case, the left operand is (x > 0), and the right operand is (x < 10).

– If (x > 0) and (x < 10) are both true, then (x > 0 && x < 10) returns true
– If either (x > 0) is false, or (x < 10) is false, then (x > 0 && x < 10) returns false

If the expression (x > 0 && x < 10) returns true (line 12), then (x > 0) and (x < 10) are both true. We
therefore print the message Your number is positive and less than 10 (line 13).

If the expression (x > 0 && x < 10) returns false (line 14), then either (x > 0) is false, or (x < 10) is
false. We therefore print the message Your number is either nonpositive or greater than 9 (line 15).

We then check whether x is either odd, negative, or both, via the expression (line 17)

 x % 2 == 1 || x < 0

The pair of vertical lines (||) is the or operator, which returns true if either the left operand is true, or
right operand is true. In this case, the left operand is (x % 2 == 1), which returns true if x is odd (by
checking whether the remainder of (x / 2) is 1). The right operand is (x < 0).

To purchase the full version, visit cppdatastructures.com

34

– If either (x % 2 == 1) is true, or (x < 0) is true, then (x % 2 == 1 || x < 0) returns true
– If (x % 2 == 1) and (x < 0) are both false, then (x % 2 == 1 || x < 0) returns false

If the expression (x % 2 == 1 || x < 0) returns true (line 17), we print the message Your number is
either odd, negative, or both (odd and negative) (line 18).

If the expression (x % 2 == 1 || x < 0) returns false (line 19), then (x % 2 == 1) and (x < 0) are both
false. We therefore print the message Your number is neither odd nor negative (line 20).

We can use parentheses to write more complex expressions, such as (line 22)

 (x < -5 && x > -10) || (x > 5 && x < 10)

In this case, the left operand is

 (x < -5 && x > -10)

which returns true if x is between -5 and -10. The right operand is

 (x > 5 && x < 10)

which returns true if x is between 5 and 10. The expression

 (x < -5 && x > -10) || (x > 5 && x < 10)

thus returns true if x is between -5 and -10, or if x is between 5 and 10.

If it returns true (line 22), we print the message Your number is either between -5 and -10, or between
5 and 10 (line 23).

If it returns false (line 24), then the left and right operands are both false. We therefore print the
message Your number is neither between -5 and -10, nor between 5 and 10 (line 25).

Finally, we determine whether x is not less than 0, via the expression (line 27)

 !(x < 0)

The exclamation point (!) is the not operator, which returns the inverse (opposite) boolean value of its
operand. In this case, the operand is (x < 0).

– If (x < 0) is true, then !(x < 0) returns false
– If (x < 0) is false, then !(x < 0) returns true

If !(x < 0) returns true (line 27), then x is not less than 0, so we print Your number is not negative (line
28).

If !(x < 0) returns false (line 29), then x is less than 0, so we print Your number is negative (line 30).

To purchase the full version, visit cppdatastructures.com

35

If, for example, x is 2, then x is not less than 0. The expression !(x < 0) (x is not less than 0) will
therefore return true:

 !(x < 0) = !(2 < 0)
 = !(false)
 = true // If x is 2, then “x is not less than 0” is true

If, on the other hand, x is -2, then x is less than 0. The expression !(x < 0) (x is not less than 0) will
therefore return false:

 !(x < 0) = !(-2 < 0)
 = !(true)
 = false // If x is -2, then “x is not less than 0” is false

Given the values 3, -6, -8, 18, 0, and 9, our program generates the following output:

 Enter a number (integer): 3
 Your number is positive and less than 10
 Your number is either odd, negative, or both
 Your number is neither between -5 and -10, nor between 5 and 10
 Your number is not negative

 Enter a number (integer): -6
 Your number is either nonpositive or greater than 9
 Your number is either odd, negative, or both
 Your number is either between -5 and -10, or between 5 and 10
 Your number is negative

 Enter a number (integer): -8
 Your number is either nonpositive or greater than 9
 Your number is either odd, negative, or both
 Your number is either between -5 and -10, or between 5 and 10
 Your number is negative

 Enter a number (integer): 18
 Your number is either nonpositive or greater than 9
 Your number is neither odd nor negative
 Your number is neither between -5 and -10, nor between 5 and 10
 Your number is not negative

 Enter a number (integer): 0
 Your number is either nonpositive or greater than 9
 Your number is neither odd nor negative
 Your number is neither between -5 and -10, nor between 5 and 10
 Your number is not negative

 Enter a number (integer): 9
 Your number is positive and less than 10
 Your number is either odd, negative, or both
 Your number is either between -5 and -10, or between 5 and 10
 Your number is not negative

To purchase the full version, visit cppdatastructures.com

36

To purchase the full version, visit cppdatastructures.com

37

3.3: Loops

Source files and folders

– loops

Chapter outline

– Performing repetition, using the for and while keywords

A loop is a set of statements to be repeatedly run, as long as a given condition returns true. The two
most common types of loops are for loops and while loops. Our program (main.cpp) begins with the
for loop (lines 7-8)

 for (int i = 0; i != 5; ++i)
 cout << i << endl;

which runs the statement

 cout << i << endl;

for i = {0, 1, 2, 3, 4}. A for loop uses the following syntax:

 for (initializer; condition; post body)
 {
 body;
 }

The initializer is a single statement, run once (and only once). In this case, the initializer is (int i = 0;).

The condition is a boolean expression, checked before each execution of the body. In this case, the
condition is (i != 5).

– If the condition returns true, the body is run once, followed by the post body.
– If the condition returns false, the loop terminates.

The body is a set of statements to be run, each time the condition returns true. If the body consists of a
single statement, we can omit the braces ({}). In this case, the body is (cout << i << endl;).

The post body is a single statement to be run, immediately following each execution of the body. In
this case, the post body is (++i).

We can depict these operations using a flow chart:

 // Continued on next page

To purchase the full version, visit cppdatastructures.com

38

 Run initializer int i = 0;
 | |
 ˅ ˅
 -˃ Check condition _____ -˃ Check (i != 5) _________
 | | | | | |
 | ˅ ˅ | ˅ ˅
 | True False | True False
 | | | | | |
 | ˅ ˅ | ˅ ˅
 | Run body Terminate loop | cout << i << endl; Terminate
 | | | | loop
 | ˅ | ˅
 |__ Run post body |__ ++i;

One iteration of a loop is a single execution of the body. The loop in lines 7-8 performs a total of 5
iterations:

 int i = 0; // Initializer

 i != 5 is true // 0 != 5 is true
 Iteration 1:
 cout << i << endl; // Print 0;
 ++i; // i = 1;

 i != 5 is true // 1 != 5 is true
 Iteration 2:
 cout << i << endl; // Print 1;
 ++i; // i = 2;

 i != 5 is true // 2 != 5 is true
 Iteration 3:
 cout << i << endl; // Print 2;
 ++i; // i = 3;

 i != 5 is true // 3 != 5 is true
 Iteration 4:
 cout << i << endl; // Print 3;
 ++i; // i = 4;

 i != 5 is true // 4 != 5 is true
 Iteration 5:
 cout << i << endl; // Print 4;
 ++i; // i = 5;

 i != 5 is false // 5 != 5 is false
 Terminate loop;

All variables created within a loop are automatically destroyed when the loop terminates. In line 7, for
example, we create i in the initializer. Once the loop ends, this particular i no longer exists.

In line 12, we create a new integer i and initialize it to 0. We then demonstrate an example of a while
loop (lines 14-18), which uses the following syntax:

To purchase the full version, visit cppdatastructures.com

39

 while (condition)
 {
 body
 }

The condition and body have the same definitions as those of a for loop, described earlier. In this case,
the condition is (i != 5), and the body is

 cout << i << endl;
 ++i;

Once again, we can depict these operations using a flow chart:

 -˃ Check condition _____ -˃ Check (i != 5) _________
 | | | | | |
 | ˅ ˅ | ˅ ˅
 | True False | True False
 | | | | | |
 | ˅ ˅ | ˅ ˅
 | Run body Terminate loop | cout << i << endl; Terminate
 |____| | ++i; loop
 |____|

Because we initialized i to 0 (line 12), this loop (lines 14-18) performs a total of 5 iterations, just like
the previous one (lines 7-8).

Note, however, that this new i (line 12) wasn't created within a loop. It will therefore remain in
existence for the duration of main.

A nested loop is a loop that exists within the body of another loop. The loop in lines 29-30, for
example, is a nested loop. The surrounding loop (lines 22-31) is called the outer loop (or main loop),
and the nested loop (lines 29-30) is called the inner loop.

The outer loop performs a total of 5 iterations, for i = {0, 1, 2, 3, 4}. In each iteration of the outer loop,

– We check whether i is even or odd, and print the result (lines 24-27).

– We then run the inner loop. The inner loop performs a total of i iterations, for n = (i – 1) down
to 0 (line 29). In each iteration of the inner loop, we print two whitespaces, followed by n
(line 30).

– When i is 0, the inner loop performs 0 iterations.
– When i is 1, the inner loop performs 1 iteration, for n = {0}.
– When i is 2, the inner loop performs 2 iterations, for n = {1, 0}.
– When i is 3, the inner loop performs 3 iterations, for n = {2, 1, 0}.
– When i is 4, the inner loop performs 4 iterations, for n = {3, 2, 1, 0}.

The entire process (lines 22-31) thus generates the output

To purchase the full version, visit cppdatastructures.com

40

 0 is even // Outer loop iteration 1 (i = 0)
 1 is odd // Outer loop iteration 2 (i = 1)
 0 // Inner loop iteration 1 (n = 0)
 2 is even // Outer loop iteration 3 (i = 2)
 1 // Inner loop iteration 1 (n = 1)
 0 // Inner loop iteration 2 (n = 0)
 3 is odd // Outer loop iteration 4 (i = 3)
 2 // Inner loop iteration 1 (n = 2)
 1 // Inner loop iteration 2 (n = 1)
 0 // Inner loop iteration 3 (n = 0)
 4 is even // Outer loop iteration 5 (i = 4)
 3 // Inner loop iteration 1 (n = 3)
 2 // Inner loop iteration 2 (n = 2)
 1 // Inner loop iteration 3 (n = 1)
 0 // Inner loop iteration 4 (n = 0)

Below is a flow chart that illustrates the logic, followed by a walk-through of the entire procedure:

 int i = 0;
 |
 ˅
 ----˃ Check (i != 5) _________________________
 | | |
 | ˅ ˅
 | True False
 | | |
 | ˅ ˅
 | Check (i % 2 == 0) Terminate loop
 | Print even or odd
 | |
 | ˅
 | int n = i - 1;
 | |
 | ˅
 | -˃ Check (n >= 0) ___
 | | | |
 | | ˅ ˅
 | | True False
 | | | |
 | | ˅ ˅
 | | Print n Terminate loop
 | | | |
 | | ˅ ˅
 | | --n; ++i;
 | |_________| |
 | |
 |________________________|
__

 int i = 0;
__

 // Continued on next page

To purchase the full version, visit cppdatastructures.com

41

 i != 5 is true
 Iteration 1
 {
 i % 2 == 0 is true
 Print "<i> is even";

 int n = i - 1; // n = -1;

 n >= 0 is false
 Terminate inner loop;

 ++i; // i = 1;
 }
__

 i != 5 is true
 Iteration 2
 {
 i % 2 == 0 is false
 Print "<i> is odd";

 int n = i - 1; // n = 0;

 n >= 0 is true
 Iteration 1
 Print n;
 --n; // n = -1;

 n >= 0 is false
 Terminate inner loop;

 ++i; // i = 2;
 }
__

 i != 5 is true
 Iteration 3
 {
 i % 2 == 0 is true
 Print "<i> is even";

 int n = i - 1; // n = 1;

 n >= 0 is true
 Iteration 1
 Print n;
 --n; // n = 0;

 n >= 0 is true
 Iteration 2
 Print n;
 --n; // n = -1;

 // Continued on next page

To purchase the full version, visit cppdatastructures.com

42

 n >= 0 is false
 Terminate inner loop;

 ++i; // i = 3;
 }
__

 i != 5 is true
 Iteration 4
 {
 i % 2 == 0 is false
 Print "<i> is odd";

 int n = i - 1; // n = 2;

 n >= 0 is true
 Iteration 1
 Print n;
 --n; // n = 1;

 n >= 0 is true
 Iteration 2
 Print n;
 --n; // n = 0;

 n >= 0 is true
 Iteration 3
 Print n;
 --n; // n = -1;

 n >= 0 is false
 Terminate inner loop;

 ++i; // i = 4;
 }
__

 i != 5 is true
 Iteration 5
 {
 i % 2 == 0 is true
 Print "<i> is even";

 int n = i - 1; // n = 3;

 n >= 0 is true
 Iteration 1
 Print n;
 --n; // n = 2;

 n >= 0 is true
 Iteration 2
 Print n;
 --n; // n = 1;

To purchase the full version, visit cppdatastructures.com

43

 n >= 0 is true
 Iteration 3
 Print n;
 --n; // n = 0;

 n >= 0 is true
 Iteration 4
 Print n;
 --n; // n = -1;

 n >= 0 is false
 Terminate inner loop;

 ++i; // i = 5;
 }
__

 i != 5 is false
 Terminate outer loop;

Our final example is a loop in which the condition is the boolean value true (line 35). In this case, the
termination condition resides within the body (lines 37-41). In each iteration, we check whether the
current value of x is divisible by 17 (line 37).

– If so, we print the message <x> is divisible by 17 (line 39). We then terminate the loop, via
the break keyword (line 40).

– If not, the post body increments x and we begin the next iteration.

By initializing x to 1000, this loop (lines 35-42) finds the first integer greater than or equal to 1000 that
is divisible by 17. The following flow chart illustrates the logic:

 int x = 1000;
 |
 ˅
 -˃ Check (true)* ________________________________
 | | |
 | ˅ ˅
 | True False**
 | | |
 | ˅ ˅
 | Check (x % 17 == 0) _________________ Terminate loop
 | | |
 | ˅ ˅
 | True False
 | | |
 | ˅ ˅
 | Print "<x>" is divisible by 17" ++x
 | Break |
 |__|

To purchase the full version, visit cppdatastructures.com

44

The loop condition (true) (marked with a * in the above diagram) will always return true. The first
false branch (marked with a **) will therefore never be taken. The loop performs a total of 4
iterations, for x = {1000, 1001, 1002, 1003}:

 int x = 1000;
__

 true is true
 Iteration 1
 x % 17 == 0 is false;
 ++x; // x = 1001
__

 true is true
 Iteration 2
 x % 17 == 0 is false;
 ++x; // x = 1002
__

 true is true
 Iteration 3
 x % 17 == 0 is false;
 ++x; // x = 1003
__

 true is true
 Iteration 4
 x % 17 == 0 is true
 Print “<x> is divisible by 17”;
 break;

The while loop equivalent of lines 35-42 is

 int x = 1000;

 while (true)
 {
 if (x % 17 == 0)
 {
 cout << x << " is divisible by 17\n"
 break;
 }

 ++x;
 }

The advantage of the while version is that x is created outside the loop, so we can continue using x after
the loop ends. In the for version (lines 35-42), x is created within the loop, so x will be destroyed upon
termination of the loop.

When a break statement occurs in a nested loop, execution resumes at the next line of the surrounding
loop. To demonstrate this, we'll use the following nested loop:

To purchase the full version, visit cppdatastructures.com

45

 for (int k = 0; k != 3; ++k) // Surrounding loop (Outer loop)
 {
 cout << "A\n";

 for (int y = 5; true; ++y) // Nested loop (Inner loop)
 {
 if (y == 7)
 {
 cout << y << endl;
 break;
 }
 }

 cout << "B\n";
 }

The outer loop performs 3 iterations, for k = {0, 1, 2}. In each iteration of the outer loop, we print the
letter A (cout << "A\n";), then execute the inner loop.

We begin the inner loop by initializing y to 5. In each iteration of the inner loop, we check if y is 7:

– If y is 7, we print the value of y (7), then break out of (terminate) the inner loop. This brings
us to the next line of the outer loop, in which we print the letter B (cout << "B\n";)

– If y isn't 7, we increment y and prepare for the next iteration of the inner loop.

Because y is initialized to 5 every single time, the inner loop will always perform 3 iterations, for y =
{5, 6, 7}.

The entire process thus generates the output

 A // Outer loop iteration 1 (k = 0)
 7 // Nested loop iteration 3 (y = 7)
 B
 A // Outer loop iteration 2 (k = 1)
 7 // Nested loop iteration 3 (y = 7)
 B
 A // Outer loop iteration 3 (k = 2)
 7 // Nested loop iteration 3 (y = 7)
 B

The key point here is that when a break statement occurs in a nested loop, it only terminates the nested
loop, not the surrounding loop.

The full output of our program (main.cpp) is

 0 // for loop
 1
 2
 3

To purchase the full version, visit cppdatastructures.com

46

 4

 0 // while loop
 1
 2
 3
 4

 0 is even // Outer loop iteration 1 (i = 0)
 1 is odd // Outer loop iteration 2 (i = 1)
 0 // Inner loop iteration 1 (n = 0)
 2 is even // Outer loop iteration 3 (i = 2)
 1 // Inner loop iteration 1 (n = 1)
 0 // Inner loop iteration 2 (n = 0)
 3 is odd // Outer loop iteration 4 (i = 3)
 2 // Inner loop iteration 1 (n = 2)
 1 // Inner loop iteration 2 (n = 1)
 0 // Inner loop iteration 3 (n = 0)
 4 is even // Outer loop iteration 5 (i = 4)
 3 // Inner loop iteration 1 (n = 3)
 2 // Inner loop iteration 2 (n = 2)
 1 // Inner loop iteration 3 (n = 1)
 0 // Inner loop iteration 4 (n = 0)

 1003 is divisible by 17 // Inner loop iteration 4 (x = 1003)

To purchase the full version, visit cppdatastructures.com

47

3.4: Boolean Variables

Source files and folders

– booleanVariables

Chapter outline

– Using boolean variables to increase code readability

As discussed in Chapter 1.3, a variable of type bool stores a boolean (true / false) value. This allows
us to store the result of a boolean expression, such as (x > 0 && x < 10), in a bool variable.

To demonstrate this, our program (main.cpp) begins by prompting the user for an integer value, which
we store as the variable k (lines 7-10). We then create a bool variable, isPositive (line 12), initializing
its value to the result of the expression (k > 0).

– If (k > 0) returns true, then isPositive will be true.
– If (k > 0) returns false, then isPositive will be false.

Similarly, we initialize isNegative (line 13) to the result of the expression (k < 0):

– If (k < 0) returns true, then isNegative will be true.
– If (k < 0) returns false, then isNegative will be false.

Lastly, we initialize isEven (line 14) to the result of the expression (k % 2 == 0):

– If (k % 2 == 0) returns true, then isEven will be true.
– If (k % 2 == 0) returns false, then isEven will be false.

We can now use these variables (isPositive, isNegative, isEven) to form boolean expressions,
improving the readability of our conditional statements:

– If (isEven) is true (line 16), we print You entered an even number (line 17).

– If (!isEven) (“is not even”) is true (line 19), we print You entered an odd number (line 20).

– If (!isPositive) (“is not positive”) and (!isNegative) (“is not negative”) are both true (line 22),
we print You entered 0 (line 23).

Given the values -3, 0, and 5, our program generates the following output:

 Enter a number (integer): -3
 You entered an odd number

To purchase the full version, visit cppdatastructures.com

48

 Enter a number (integer): 0
 You entered an even number
 You entered 0
__

 Enter a number (integer): 5
 You entered an odd number

To purchase the full version, visit cppdatastructures.com

49

3.5: Putting It All Together

Source files and folders

– retirementAge

Chapter outline

– Writing a small program that combines the key concepts from Parts 1-3

Our program in this chapter combines all of the key concepts introduced thus far. It begins by
prompting the user for their current age, as well as their planned age of retirement. It then displays the
user's future age and retirement status for the next 25 years, in 5-year intervals. Given the values 43
and 60, for example, the program generates the following output:

 What is your current age? 43

 At what age do you plan to retire? 60

 In 5 years, you will be 48 years old.
 You will have 12 years before retirement.

 In 10 years, you will be 53 years old.
 You will have 7 years before retirement.

 In 15 years, you will be 58 years old.
 You will have 2 years before retirement.

 In 20 years, you will be 63 years old.
 You will have been retired for 3 years.

 In 25 years, you will be 68 years old.
 You will have been retired for 8 years.

We begin by obtaining the user's currentAge and retirementAge (main.cpp, lines 7-14). The loop (line
16) then performs 5 iterations, for futureYears = {5, 10, 15, 20, 25}. The variable futureYears
represents the number of years in the future, relative to the current year. In each iteration,

– We calculate the user's futureAge, by adding the number of futureYears to their currentAge
(line 18).

– We determine whether or not the user will be retired at that point, by checking whether their
futureAge is greater than or equal to their retirementAge (line 19).

– If (futureAge >= retirementAge) is true, then isRetired will be true.
– If (futureAge >= retirementAge) is false, then isRetired will be false.

To purchase the full version, visit cppdatastructures.com

50

– We print the message In <futureYears> years, you will be <futureAge> years old (lines 21-
22).

– If isRetired is true (line 24), then the number of years spent in retirement is equal to
(futureAge – retirementAge). We thus print the message You will have been retired for
<futureAge – retirementAge> years (lines 26-27).

– If isRetired is false (line 29), then the number of years remaining until retirement is equal to
(retirementAge – futureAge). We thus print the message You will have
<retirementAge – futureAge> years before retirement (lines 31-32).

Given a currentAge of 43 and a retirementAge of 60, for example, the loop performs the following
operations:

 int futureYears = 5;
__

 futureYears <= 25 is true
 Iteration 1
 {
 futureAge = currentAge + futureYears
 = 43 + 5
 = 48;

 isRetired = (futureAge >= retirementAge)
 = (48 >= 60)
 = false;

 Print "In <5> years, you will be <48> years old."

 isRetired is false
 Print "You will have <60 - 48> years before retirement."

 futureYears += 5
 = 10;
 }
__

 futureYears <= 25 is true
 Iteration 2
 {
 futureAge = currentAge + futureYears
 = 43 + 10
 = 53;

 isRetired = (futureAge >= retirementAge)
 = (53 >= 60)
 = false;

 Print "In <10> years, you will be <53> years old."

To purchase the full version, visit cppdatastructures.com

51

 isRetired is false
 Print "You will have <60 - 53> years before retirement."

 futureYears += 5
 = 15;
 }
__

 futureYears <= 25 is true
 Iteration 3
 {
 futureAge = currentAge + futureYears
 = 43 + 15
 = 58;

 isRetired = (futureAge >= retirementAge)
 = (58 >= 60)
 = false;

 Print "In <15> years, you will be <58> years old."

 isRetired is false
 Print "You will have <60 - 58> years before retirement."

 futureYears += 5
 = 20;
 }
__

 futureYears <= 25 is true
 Iteration 4
 {
 futureAge = currentAge + futureYears
 = 43 + 20
 = 63;

 isRetired = (futureAge >= retirementAge)
 = (63 >= 60)
 = true;

 Print "In <20> years, you will be <63> years old."

 isRetired is true
 Print "You will have been retired for <63 - 60> years."

 futureYears += 5
 = 25;
 }
__

 // Continued on next page

To purchase the full version, visit cppdatastructures.com

52

 futureYears <= 25 is true
 Iteration 5
 {
 futureAge = currentAge + futureYears
 = 43 + 25
 = 68;

 isRetired = (futureAge >= retirementAge)
 = (68 >= 60)
 = true;

 Print "In <25> years, you will be <68> years old."

 isRetired is true
 Print "You will have been retired for <68 - 60> years."

 futureYears += 5
 = 30;
 }
__

 futureYears <= 25 is false
 Terminate loop;

To purchase the full version, visit cppdatastructures.com

53

Part 4: Functions and Scope

4.1: Functions

Source files and folders

– functions

Chapter outline

– Declaring, defining, and calling functions
– The difference between arguments and parameters

As discussed in Chapter 1.3, a function, also called a subroutine or method, is a set of instructions that
can be called (executed) by name. A function call is the act of running (executing) a function.

Functions allow us to divide large, complex tasks into smaller, simpler tasks. They also let us reuse
code, thereby reducing unnecessary code duplication. This, in turn, makes our code more manageable
and easier to follow.

To create a function, we begin by declaring it. A function declaration is a statement that provides the
information required to call a function: its name, parameters, and return type. The syntax of a function
declaration is

 return_type function_name(parameter_list);

where

– return_type is the the function's return type. As discussed in Chapter 1.3, the return type is the
type of value (int, double, etc.) returned to the caller (executor) of the function, upon
completion. If there is no return value, we use a return type of void.

– function_name is the name of the function.

– parameter_list is a comma-separated list of parameters (input values). Each parameter must
have a type (int, double, etc.) and name, separated by a space. If there are no parameters, we
leave the list empty.

Our program (main.cpp), for example, begins by declaring a function called salesTax (line 3), which
returns the amount of sales tax (in dollars) on an item. The two parameters are

– price (of type double): the price of the item, in dollars
– rate (of type double): the sales tax rate, as a percentage of the item price (e.g. 3.5, for 3.5%)

To purchase the full version, visit cppdatastructures.com

54

The return type is double. Recall from Chapter 1.3 that the type double represents a real number (e.g.
3.14159).

We then declare another function, shippingCost (line 4), which returns the shipping cost (in dollars) of
an item. The parameter weight (of type double) is the weight of the item, in pounds. The return type
(like that of salesTax) is also double.

Once we declare a function, we need to define it. A function definition, also called an implementation,
specifies the function body. The function body is the set of instructions to be run when the function is
called. The syntax of a function definition is

 return_type function_name(parameter_list)
 {
 function_body
 }

The return_type, function_name, and parameter_list must match those of the corresponding function
declaration. Note, however, that a function definition doesn't contain a semicolon (;) at the end of the
parameter_list (unlike a function declaration).

To implement (define) the salesTax function, we simply return (price * (rate / 100)) (lines 32-35).

To implement shippingCost, we begin by creating cost (line 39), a variable of type double, which we'll
use to store the final shipping cost.

– If the item weight is under 5 pounds (line 41), we'll set the cost to 7.99 (line 42), which
represents a flat rate of $7.99.

– If the weight is 5 pounds or more (line 43), we'll set the cost to (2.00 * weight) (line 44), which
represents a cost of $2 per pound.

After calculating the cost, we return it to the caller (line 46).

Now that we've completed salesTax and shippingCost, we'll call them from within main. We begin by
prompting the user for three values: retailPrice (the price of an item), salesTaxRate, and itemWeight
(lines 10-21).

We then compute the totalCost of the item, by adding the retailPrice, salesTax, and shippingCost (lines
23-25). The expression (line 24)

 salesTax(retailPrice, salesTaxRate)

calls the salesTax function. When calling a function, the values that we pass (send) to the function are
called arguments. In line 24, retailPrice and salesTaxRate are the arguments being passed (sent) to the
salesTax function. If, for example, retailPrice is 24.99 and salesTaxRate is 6.25, then salesTax will
return 1.561875 (24.99 x 6.25/100).

To purchase the full version, visit cppdatastructures.com

55

Similarly, in the function call (line 25)

 shippingCost(itemWeight)

itemWeight is the argument being passed to shippingCost. If, for example, itemWeight is 2.50, then
shippingCost will return 7.99. Conversely, if itemWeight is 8.25, then shippingCost will return 16.50
(2.00 x 8.25).

After calculating the totalCost, we print the message (line 27)

 The total cost is $<totalCost>

Below is the output of two sample runs of our program. The first demonstrates an example of a flat
rate shippingCost (when the itemWeight is under 5 pounds). The second demonstrates an example of a
per-pound shippingCost (when the itemWeight is 5 pounds or above).

 Enter retail price (e.g. for $24.99, enter 24.99): 29.99
 Enter sales tax rate (e.g. for 6.25%, enter 6.25): 7.50
 Enter item weight (e.g. for 2.50 lbs, enter 2.50): 3.00

 The total cost is $40.2293
__

 Enter retail price (e.g. for $24.99, enter 24.99): 14.99
 Enter sales tax rate (e.g. for 6.25%, enter 6.25): 4.75
 Enter item weight (e.g. for 2.50 lbs, enter 2.50): 8.50

 The total cost is $32.702

Before moving on, there are a few important points to note regarding functions.

In order to call a function, the declaration must appear before the call site (the location at which the
function is called). In our program, for example, the declaration of salesTax (line 3) appears before the
call site (line 24). If we try to call a function before declaring it, our program won't compile.

We can, however, declare the same function multiple times. This is often necessary in programs
consisting of multiple source files. If, for example, our program consisted of two .cpp files, both of
which contained calls to salesTax, we would need to declare salesTax in both files.

Every function must have one (and only one) definition. If we try to define the same function multiple
times, our program won't compile.

A function definition, however, does not need to appear before the call(s). In our program, for
example, the definition of salesTax (lines 32-35) appears after the call (line 24).

Function parameters are separate variables, distinct from arguments. Each time a function is called, its
parameters are initialized to the values of the corresponding arguments. When we call shippingCost
(line 25), for example, the parameter weight (line 37) is a separate variable, initialized to the value of

To purchase the full version, visit cppdatastructures.com

56

the argument itemWeight (line 25).

As a general guideline, the body of any one function shouldn't exceed 40 lines or so. This is mainly for
the sake of code readability, not due to any technical constraints. If you find yourself drastically going
over this limit, you're likely trying to perform too much work within a single function. In such cases,
try dividing the task among shorter, more focused functions.

On a related note, maintaining a line limit of 80 characters can also improve readability. A line limit of
80 characters means that no single line of code exceeds 80 characters. If a single statement exceeds 80
characters (as in lines 23-25 of main.cpp), we divide it among multiple lines. Additionally, we use
indentation to show that the separate lines are all part of the same statement.

At the beginning of the chapter, I mentioned that in a function declaration, we must specify the type
and name of each parameter. Technically, however, it is possible to omit the parameter names in a
function declaration. We could have, for example, written the declaration of salesTax (line 13) as

 double salesTax(double, double);

instead of

 double salesTax(double price, double rate);

Though technically legal, this would be considered bad form, as it omits essential information.

In any case, this technicality does not apply to function definitions. If, for example, we attempt to omit
the parameter names from the definition of salesTax (lines 79-82), as in

 double salesTax(double, double)
 {
 return price * (rate / 100);
 }

then our code won't compile, because the compiler won't know what price and rate are in the function
body (line 81).

To purchase the full version, visit cppdatastructures.com

57

4.2: Namespaces

Source files and folders

– namespaces

Chapter outline

– Declaring and using namespaces

Our program in this chapter is functionally identical to that of the previous chapter. The code,
however, is reorganized to demonstrate the use of namespaces.

A namespace is a named region in which we can group together conceptually related components. The
syntax of a namespace declaration is

 namespace n
 {
 members
 };

where n is the name of the namespace, and members are the functions, variables, etc. that reside in
namespace n. Note that a namespace declaration contains a semicolon (;) after the closing brace.

Our program, for example, begins by declaring three functions, getRetailPrice, getSalesTaxRate, and
getItemWeight (main.cpp, lines 5-7), in a namespace called userInterface (lines 3-4, 8). These three
functions are said to be “declared in namespace userInterface.” The name, userInterface, indicates that
its members are responsible for handling user interaction.

Because we declared these functions in userInterface, we must also define them in userInterface (lines
33-34, 70):

– getRetailPrice prompts the user for the retail price and returns it to the caller (lines 35-45).
– getSalesTaxRate prompts the user for the sales tax rate and returns it to the caller (lines 47-57).
– getItemWeight prompts the user for the item weight and returns it to the caller (lines 59-69).

Next, we'll create another namespace, called feeCalculator (lines 10-11, 15), whose members are
responsible for computing the various fees:

– salesTax (line 13) returns the sales tax, using the given price and rate.
– shippingCost (line 14) returns the shipping cost, using the given weight.
– totalFees (line 12) returns (salesTax + shippingCost), using the given itemPrice, salesTaxRate,

and itemWeight.

Because we declared these functions in feeCalculator, we must also define them in feeCalculator (lines

To purchase the full version, visit cppdatastructures.com

58

72-73, 95):

– salesTax and shippingCost (lines 79-82, 84-94) are unchanged from the previous chapter.
– totalFees (lines 74-77) simply calls salesTax and shippingCost, returning the sum.

Standard Library components, such as cout, endl, and string, are declared in namespace std. Although
std is short for “standard,” some people pronounce it as “stud” or “stood” (rather than “STD”) for the
sake of brevity.

The main function resides in the global namespace. The global namespace is the nameless, outermost
namespace, which encloses all other namespaces. The following diagram illustrates the relationships
between the various namespaces in our program:

 __
 | |
 | global namespace |
 | |
 | main |
 | _________________________ _________________________ |
	namespace userInterface		namespace feeCalculator	
	getRetailPrice		totalFees	
	getSalesTaxRate		salesTax	
	getItemWeight		shippingCost	
	_________________________		_________________________	

	namespace std			
	cout			
	endl			
	string			

__				

To describe relationships between namespaces, we use the terms inner, outer, and adjacent. Given
three namespaces, x, a, and b, where a and b are members of x,

– x is an outer namespace of a and b (relative to a and b, x is an outer namespace).
– a and b are inner namespaces of x (relative to x, a and b are inner namespaces).
– a and b are adjacent namespaces (relative to each other).

In the above diagram, for example,

– The global namespace is an outer namespace of userInterface, feeCalculator, and std.
– userInterface, feeCalculator, and std are inner namespaces of the global namespace.

To purchase the full version, visit cppdatastructures.com

59

– userInterface, feeCalculator, and std are adjacent namespaces.

When referring to a member of an inner or adjacent namespace, we must, by default, use its fully
qualified name (the name of the member, including its namespace). To do so, the syntax is

 n::m

where m is the member, and n is the namespace in which m resides. The pair of colons (::) is called the
scope resolution operator.

We begin main, for example, by calling getRetailPrice, getSalesTaxRate, and getItemWeight (lines 21-
23):

 double retailPrice = userInterface::getRetailPrice();
 double salesTaxRate = userInterface::getSalesTaxRate();
 double itemWeight = userInterface::getItemWeight();

Relative to main (which resides in the global namespace), these three functions (getRetailPrice,
getSalesTaxRate, and getItemWeight) reside in an inner namespace (userInterface). We must therefore
use their fully qualified names (userInterface::getRetailPrice, userInterface::getSalesTaxRate,
userInterface::getItemWeight).

Similarly, when calling totalFees from within main (lines 25-26), we must use the fully qualified name
(feeCalculator::totalFees). This is because relative to main (the global namespace), totalFees resides
in an inner namespace (feeCalculator).

Finally, we print the totalCost using cout and endl (line 28), which, as mentioned earlier, reside in
namespace std. We don't, however, need to use the fully qualified names (std::cout, std::endl), due to
the statement (line 19)

 using namespace std;

As mentioned in Chapter 1.3, this statement is called a using directive. The syntax of a using directive
is

 using namespace n;

where n is the namespace that we'd like to use. This allows us to omit the n:: when referring to
members of n.

The using directive in line 19, for example, allows us to omit the std:: when referring to any member
of namespace std. Note, however, that this only applies to the body of the surrounding function (main,
in this case). To avoid writing std:: inside the other functions (getRetailPrice, getSalesTaxRate,
getItemWeight), we must repeat the using directive (lines 37, 49, 61).

We can refer to any member of the same namespace without using its fully qualified name. In line 76,
for example, we call salesTax and shippingCost, without using the namespace name (feeCalculator::).

To purchase the full version, visit cppdatastructures.com

60

This is because we're calling these functions from within totalFees, which also resides in
feeCalculator.

A using declaration is similar to a using directive, but only applies to a specific member. The syntax
of a using declaration is

 using n::m;

where n is the namespace name, and m is the member that we'd like to exempt. This allows us to refer
to m, without using its fully qualified name (n::m). The using declaration

 using std::cout;

for example, allows us to omit the std:: when referring to cout (and only cout). For all other members
of std, we still need to use the fully qualified names, as in

 int main()
 {
 using std::cout;

 cout << “Hello” << std::endl;

 return 0;
 }

As another example, below is an alternative version of main (lines 17-31). The using directive for
userInterface allows us to omit the userInterface:: from the calls to getRetailPrice, getSalesTaxRate,
and getItemWeight. The using declaration for totalFees allows us to omit the feeCalculator:: when
calling totalFees.

 int main()
 {
 using namespace std;
 using namespace userInterface;
 using feeCalculator::totalFees;

 double retailPrice = getRetailPrice();
 double salesTaxRate = getSalesTaxRate();
 double itemWeight = getItemWeight();

 double totalCost = retailPrice +
 totalFees(retailPrice, salesTaxRate, itemWeight);

 cout << "\nThe total cost is $" << totalCost << endl;

 return 0;
 }

There may be times when two or more namespaces have a member with the same name, as in

To purchase the full version, visit cppdatastructures.com

61

 void f();

 namespace x
 {
 void f();
 };

 namespace y
 {
 void f();
 };

Here, there are three versions of the function f: one in the global namespace, one in namespace x, and
another in namespace y. Recall from the previous chapter that the return type void means that f doesn't
have a return value.

In this case, even if we write using directives for x and / or y, we'll still need to use the fully qualified
name for f. Otherwise, the compiler won't know which f we're referring to:

 int main()
 {
 using namespace x;
 using namespace y;

 ::f(); // Calling the f in the global namespace (“global f”)
 x::f(); // Calling the f in namespace x
 y::f(); // Calling the f in namespace y

 return 0;
 }

As shown above, to explicitly refer to a member m of the global namespace, the syntax is

 ::m

There is no namespace name because (as mentioned earlier) the global namespace is nameless.

To purchase the full version, visit cppdatastructures.com

62

To purchase the full version, visit cppdatastructures.com

63

4.3: Lifetime, Visibility, and Scope

Source files and folders

– scope

Chapter outline

– How the location of a variable's declaration determines its lifetime and visibility

The lifetime of a variable v describes when v is created and destroyed, while the visibility of v describes
which portions of code can directly access v. The lifetime and visibility of v are determined by where
v is declared. Given

 void f(int p);

 int main()
 {
 int i = 7;
 std::cout << "i is " << i << std::endl;
 f(i);

 return 0;
 }

 void f(int p)
 {
 if (p % 2 == 0)
 {
 std::string s = " is even\n";
 std::cout << p << s;
 }
 }

for example,

– i is created in the first line of main, and destroyed at the end of main.
– p is created at the beginning of the call to f, and destroyed at the end of f.
– s is created in the conditional body, and destroyed at the end of the conditional body.

– i is visible (directly accessible) to the body of main.
– p is visible to the body of f.
– s is visible to the conditional body.

The lifetime and visibility of a variable are sometimes referred to as its scope. As we discuss the
program in this chapter, we'll examine the scope of each variable. We begin by declaring pi (main.cpp,
line 4), a variable of type const double, initialized to π (3.14159). The keyword const is short for

To purchase the full version, visit cppdatastructures.com

64

constant (non-modifiable). The type const double thus represents a non-modifiable value of type
double. This means that the value of pi, once initialized, can't be changed. If we try to assign a new
value, as in

 pi = 1.618;

then our program won't compile. This makes the const keyword indispensable when declaring
mathematical constants and other fixed values.

Because pi isn't declared inside of a particular function, pi will be created at the very beginning of the
program (before the execution of main). It will remain visible to every function at all times, and won't
be destroyed until the end of the program (after the termination of main). These types of variables,
which have the broadest possible scope (lifetime and visibility), are called global variables.

Next, we declare the function calculateArea (line 6), which returns the area of a circle with the given
radius r. To implement calculateArea, we use the formula (πr2). The expression (line 46)

 pow(r, 2)

returns r2, by calling the Standard Library function pow, which is short for power. This function,
declared as

 double pow(double base, int exponent);

returns the value of the base raised to the power of the exponent. In order to use pow, we need to
include the <cmath> header (line 1).

Each time calculateArea is called, the parameter r (line 44) is created and initialized. It will be visible
for the duration of the body (line 46), and destroyed when the function ends.

Our next function, calculateCircumference (line 7), returns the circumference of a circle with the given
radius r. To implement calculateCircumference, we use the formula (π * diameter). We begin by
calculating the diameter (line 51), which is equal to twice the radius. We then return the value of
(pi * diameter) (line 53).

Each time calculateCircumference is called, the parameter r (line 49) is created and initialized. It will
be visible for the duration of the body (lines 51-53), and destroyed when the function ends. Similarly,
after we declare diameter (line 51), it will be visible for the duration of the body (lines 52-53), and
destroyed when the function ends.

To implement main, we begin by printing the message (lines 13-14)

 This program calculates the area and circumference of 3 circles,
 as well as running totals of the area and circumference.

We then declare and initialize two doubles (lines 16-17),

To purchase the full version, visit cppdatastructures.com

65

– sumAreas, the running total (sum) of the circles' areas
– sumCircumferences, the running total (sum) of the circles' circumferences

Both of these variables will be visible for the duration of the body (lines 18-41), and destroyed at the
end of main.

Next, we calculate the area and circumference of each circle, and update the running totals while doing
so. The loop (lines 19-39) performs 3 iterations, for c = {1, 2, 3}. The variable c, declared in the
initializer (line 19), will be only visible to the loop (lines 19-39), and destroyed when the loop ends.

In each iteration of the loop (lines 21-38),

– We declare a variable radius (line 21), which is the radius of the current circle. We then
prompt the user for the length of the radius (lines 23-27). This variable will only be visible
for the remainder of the current iteration (lines 22-38), after which it will be destroyed.

– We declare a variable area (line 29), which is the area of the current circle. To initialize the
value of area, we call calculateArea, using the radius. This variable (area) will only be
visible for the remainder of the current iteration (lines 30-38), after which it will be destroyed.

– We declare the variable circumference (line 30), which is the circumference of the current
circle. To initialize the value of circumference, we call calculateCircumference, using the
radius. This variable (circumference) will only be visible for the remainder of the current
iteration (lines 31-38), after which it will be destroyed.

– We update the running total of the area (sumAreas) (line 32), by incrementing sumAreas by the
current area.

– We update the running total of the circumference (sumCircumferences) (line 33), by
incrementing sumCircumferences by the current circumference.

– We print the area and circumference of the current circle (lines 35-36), followed by the
running totals of the area and circumference (lines 37-38).

Given radius values of 7, 4, and 9, our program generates the following output:

 This program calculates the area and circumference of 3 circles,
 as well as running totals of the area and circumference.

 Enter the radius of circle 1 (e.g. for 3.5 m, enter 3.5): 7

 Area of circle 1 = 153.938 sq m
 Circumference of circle 1 = 43.9823 m
 Sum of areas = 153.938 sq m
 Sum of circumferences = 43.9823 m

To purchase the full version, visit cppdatastructures.com

66

 Enter the radius of circle 2 (e.g. for 3.5 m, enter 3.5): 4

 Area of circle 2 = 50.2654 sq m
 Circumference of circle 2 = 25.1327 m
 Sum of areas = 204.203 sq m
 Sum of circumferences = 69.115 m

 Enter the radius of circle 3 (e.g. for 3.5 m, enter 3.5): 9

 Area of circle 3 = 254.469 sq m
 Circumference of circle 3 = 56.5486 m
 Sum of areas = 458.672 sq m
 Sum of circumferences = 125.664 m

Before moving on, we'll briefly summarize the rules regarding scope. Given a variable v,

– If v is declared within the body of a function, loop, or conditional statement, then v's scope
will be limited to the block (pair of braces) surrounding v's declaration site. If the surrounding
braces form a loop body, then v will be destroyed at the end of each iteration.

– If v is declared in the initializer of a for loop, then v's scope will cover the entire loop (all
iterations).

– If v is a parameter of a function f, then v's scope will cover the entire body of f.

– If v is a global variable, then v's scope will cover the entire program.

Finally, to maximize code readability and reduce the chances of bugs (errors / unintended behavior),
variables should be declared with the narrowest possible scope. If, for example, we need to write a
function f that prints the numbers 1 through 5, we should prefer

 void f()
 {
 for (int i = 1; i != 6; ++i) // Narrowest possible scope (i's scope
 std::cout << i << std::endl; // is limited to the loop)
 }

as opposed to

 void f()
 {
 int i = 1; // Broader scope (i's scope covers the
 // entire body of f)
 while (i != 6)
 {
 std::cout << i << std::endl;
 ++i;
 }
 }

To purchase the full version, visit cppdatastructures.com

67

or worse yet,

 int i = 1; // Broadest possible scope (i's scope
 // covers the entire program)
 void f()
 {
 while (i != 6)
 {
 std::cout << i << std::endl;
 ++i;
 }
 }

Variables, in other words, should be declared as close as possible to where they are used. As shown
above, i is merely a loop counter, so we need not expose it to the rest of f, or the entire program. Doing
so would make it easier to create bugs, as well as reduce efficiency, because i would remain in memory
longer than necessary.

Exceptions to this rule can be made, however, for frequently-used constants, such as pi in our program
(main.cpp, line 4).

To purchase the full version, visit cppdatastructures.com

68

To purchase the full version, visit cppdatastructures.com

69

4.4: Function Overloading

Source files and folders

– functionOverloading

Chapter outline

– Creating multiple functions with the same name

Function overloading is the process of creating an overloaded function. An overloaded function is a
function for which there are multiple versions with the same name, differing by their number and / or
types of parameters.

Each version of an overloaded function f is called an overload of f. Our program (main.cpp), for
example, begins by declaring three overloads of a function called area (lines 4-6):

– The first (line 4) returns the area of a square with the given length, by calculating length2

(lines 33-36).

– The second (line 5) returns the area of a rectangle with the given length and width, by
multiplying the length by the width (lines 38-41).

– The third (line 6) returns the area of a cuboid (rectangular prism) with the given length, width,
and height, by summing the area of all 6 sides (lines 43-48).

We begin main by prompting the user for the length, width, and height (lines 12-23). We then call each
overload of area (lines 25-28), printing the result. Based on the number and types of arguments that
we provide when calling area, the compiler selects the appropriate overload. This process is called
overload resolution.

Given the values 4, 6, and 3.5, our program generates the following output:

 Enter length (e.g. for 2.5 m, enter 2.5): 4
 Enter width (e.g. for 2.5 m, enter 2.5): 6
 Enter height (e.g. for 2.5 m, enter 2.5): 3.5

 The area of a square is 16 sq m
 The area of a rectangle is 24 sq m
 The area of a cuboid is 118 sq m

The pow function (line 35) is an example of overloading by parameter type. The Standard Library
provides several overloads of pow, including

 double pow(double base, int exponent);
 double pow(double base, double exponent);

To purchase the full version, visit cppdatastructures.com

70

Given

 double x = 1.618;
 int y = 3;
 double z = 4.5;

for example, suppose that we make the function call

 pow(x, y)

In this case, the arguments x and y are of type double and int, so the compiler would select the first
overload, pow(double base, int exponent). Similarly, if we make the function call

 pow(x, z)

the arguments x and z are both of type double, so the compiler would select the second overload,
pow(double base, double exponent).

Overloads can also differ by return type, as long as their number and / or types of parameters are
different. We could, for example, overload a function f as

 int f(double d);
 double f(int i);
 bool f(double d, int i);

This is legal because every overload of f has a different number of parameters, and / or different types
of parameters.

We cannot, however, overload a function by return type only. The following, for example, won't
compile:

 int g(bool b, char c);
 double g(bool b, char c);
 bool g(int i);

This is illegal because the first two overloads of g differ only by their return type. Given the
expression

 g(true, 'x')

for example, the compiler won't be able to tell whether we intend to call the first or second overload of
g.

To purchase the full version, visit cppdatastructures.com

71

4.5: Header Files and Inline Functions

Source files and folders

– headerFiles

Chapter outline

– Splitting a program among multiple source files

In Chapter 1.1, we outlined the process by which source code is transformed into an executable:

 Source Code (.h and .cpp files, written in C++)
 |
 | (Compilation)
 ˅
 Object Code (.obj files, written in machine language)
 |
 | (Linking)
 ˅
 Executable (.exe file, finished program)

Source files with the extension .h are called header files, commonly referred to as headers. Standard
Library headers, such as <iostream> and <cmath>, don't have the .h extension, in order to distinguish
them from non-standard headers.

As we discussed in Chapter 1.1, compilation is the process of translating source code (.h and .cpp files)
into object code (.obj files). A translation unit consists of the source code in a single .cpp file, and all
of its included headers.

All of our programs thus far have consisted of a single translation unit (main.cpp, and one or more
Standard Library headers). In this chapter, we'll take the source code from Chapter 4.1 and divide it
into multiple translation units.

We begin by creating the header file shippingCost.h, which contains the declaration of the
shippingCost function (line 1). We then create the source file shippingCost.cpp, containing the
definition (lines 1-11).

Next, we create the header file salesTax.h, which contains the declaration of the salesTax function (line
4), as well as the definition (lines 6-9). The inline keyword (line 6), placed before the return type in
the definition, designates salesTax as an inline function. This instructs the compiler to insert the entire
body of salesTax (lines 7-9) at each call site, thereby eliminating the overhead of a function call.

Suppose, for example, that we call salesTax from within main, as in

 // Continued on next page

To purchase the full version, visit cppdatastructures.com

72

 int main()
 {
 double p = 19.99;
 double r = 7.50;
 double s = salesTax(p, r); // Call site of salesTax

 return 0;
 }

Normally, this would entail a function call to salesTax. Because salesTax is an inline function,
however, the compiler inserts the body of salesTax directly at the call site, generating the code

 int main()
 {
 double p = 19.99;
 double r = 7.50;
 double s = p * (r / 100);

 return 0;
 }

This eliminates the call to salesTax altogether, thereby improving the performance of main. This
process, by which the compiler inserts the body of an inline function directly at the call site, is called
inline expansion.

For inline expansion to occur, the function definition must appear before the call site. This is why
salesTax.h contains both the declaration and the definition. The definition, however, can only appear
once within a given translation unit.

Suppose, for example, that there are two header files, checkout.h and invoice.h, both of which contain
calls to salesTax. Both of these files must therefore include salesTax.h:

 checkout.h invoice.h
 { {
 #include "salesTax.h" #include “salesTax.h”
 } }

If main.cpp then includes checkout.h and invoice.h, as in

 main.cpp
 {
 #include “checkout.h”
 #include “invoice.h”
 }

then the function definition for salesTax will appear twice, preventing compilation.

The solution to this is to create an include guard for salesTax.h. An include guard is a set of
preprocessor commands that prevents a body of text from appearing more than once in the same
translation unit. The syntax of an include guard is

To purchase the full version, visit cppdatastructures.com

73

 #ifndef HEADER_ID
 #define HEADER_ID

 // Source code

 #endif

where HEADER_ID is a unique identifier for the header file, customarily in all-caps. All of the text
between #ifndef and #endif will appear no more than once in a given translation unit.

In salesTax.h, lines 1, 2, and 11 form the include guard. This ensures that lines 3-10 will appear only
once in a given translation unit, even if salesTax.h is included multiple times.

We can now include the headers for salesTax and shippingCost in main.cpp (lines 3-4). The function
definition for main (lines 6-30) is unchanged from Chapter 4.1. Our program now consists of two
translation units:

 Translation Unit 1
 {
 <iostream>
 salesTax.h
 shippingCost.h
 main.cpp
 }

 Translation Unit 2
 {
 shippingCost.cpp
 }

At compile time (when the source code is compiled), the compiler works on each translation unit
separately. Unit 1 is compiled into the object file main.obj, and Unit 2 is compiled into the object file
shippingCost.obj. These two object files are then linked to form the executable (.exe) file.

By isolating the function definition of shippingCost in its own translation unit, we reduce the impact of
making future changes to the source code. To modify the definition of shippingCost, for example, we
would only need to recompile Unit 2, then link the updated shippingCost.obj file with the existing
(unchanged) main.obj file. None of the source code in Unit 1 would have to be recompiled.

Before moving on, here's a summary of the key points regarding header files and inline functions:

– For non-inline functions, place the declaration in a header (.h) file, and the definition in a
source (.cpp) file. An include guard in the header file isn't required. It will, however, speed
up compilation if the header is included multiple times in the same translation unit.

– For inline functions, place the declaration and the definition in a header file. The header file
must contain an include guard, to prevent the definition from appearing more than once in the
same translation unit.

To purchase the full version, visit cppdatastructures.com

74

– Defining a function as inline doesn't guarantee inline expansion at every call site. The inline
keyword, in other words, is only a suggestion to the compiler, not a strict command. This is
because there is a downside to inline expansion, in the form of increased code size. At each
call site, the compiler performs a cost-benefit analysis. If inline expansion is deemed to be
suboptimal, the compiler will generate a normal function call instead.

– Because inline expansion increases code size, the best functions to inline are those with
particularly short bodies (around 5 lines or less).

To purchase the full version, visit cppdatastructures.com

75

Part 5: Pointers, Arrays, and References

5.1: Pointers

Source files and folders

– pointers

Chapter outline

– Bytes, memory addresses, and hexadecimal numbers
– Indirectly accessing a variable, by taking its address

Memory usage and storage capacity are measured in units called bytes (B). You've likely encountered
the terms kilobyte (kB), megabyte (MB), gigabyte (GB), and terabyte (TB), all of which represent
multiples of 1 byte:

 1 kB = 1000 B (1 kilobyte = 1 thousand bytes)
 1 MB = 1000 kB = 1,000,000 B (1 megabyte = 1 million bytes)
 1 GB = 1000 MB = 1,000,000,000 B (1 gigabyte = 1 billion bytes)
 1 TB = 1000 GB = 1,000,000,000,000 B (1 terabyte = 1 trillion bytes)

On a RAM (random access memory) chip, each byte has a numerical address, indicating its physical
location. Memory addresses are commonly represented using hexadecimal numbers.

For the purposes of this book, you won't need to know how to read or write hexadecimal values. We
will, however, briefly describe the process, if only to provide some basic understanding and context.

The decimal, or base-10 numbering system, uses 10 digits. This is the system that we use most often
in daily life. To compute the value of a base-10 number, we multiply each digit by the corresponding
power of 10, and take the sum:

 Digit 0 1 2 3 4 5 6 7 8 9
 Value 0 1 2 3 4 5 6 7 8 9

 7 = (7 x 100)
 29 = (2 x 101) + (9 x 100)
 943 = (9 x 102) + (4 x 101) + (3 x 100)
 9484 = (9 x 103) + (4 x 102) + (8 x 101) + (4 x 100)

The hexadecimal, or base-16 system, uses 16 digits. To compute the value of a base-16 number, we
multiply each digit by the corresponding power of 16, and take the sum. The base-16 numbers {7, 1D,
3AF, 250C}, for example, are equivalent to the base-10 numbers {7, 29, 943, 9484}:

 // Continued on next page

To purchase the full version, visit cppdatastructures.com

76

 Digit 0 1 2 3 4 5 6 7 8 9 A B C D E F
 Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 7 = (7 x 160) = 7
 1D = (1 x 161) + (D x 160) = 29
 3AF = (3 x 162) + (A x 161) + (F x 160) = 943
 250C = (2 x 163) + (5 x 162) + (0 x 161) + (C x 160) = 9484

At runtime (when a program is run), variables are stored in memory. To create a variable, the system
allocates (reserves) the required number of bytes, at a particular address. The number of bytes
required to store a variable depends on its type (int, double, etc.), the hardware platform, and the
compiler.

The size of an int, for example, may be 4 bytes on one system, and 8 bytes on another. Note, however,
that on the same system, all ints will be the same size, regardless of value. If, for example, the size of
an int on a given system is 4 bytes, then every int on that system will use 4 bytes of memory, no more
and no less. An int k, whose value is 7, and an int p, whose value is 7,000,000, will both use 4 bytes.

Although memory addresses are usually represented using hexadecimal numbers, we'll use base-10 for
the sake of simplicity. Suppose, for example, that our program has access to 30 bytes of memory, with
the addresses {01, 02, 03...30}:

 01 02 03 04 05 06 07 08 09 10
 | | | | | | | | | | |

 11 12 13 14 15 16 17 18 19 20
 | | | | | | | | | | |

 21 22 23 24 25 26 27 28 29 30
 | | | | | | | | | | |

Let's also suppose that on this system, the size of an int is 2 bytes. Our program (main.cpp) begins by
creating two ints, x and y (lines 7-8), initialized to 0 and 1 respectively. At runtime, the system
allocates 2 bytes for x, and 2 bytes for y. The following diagram depicts a hypothetical scenario, in
which x resides at address 03 (with a value of 0), and y resides at address 17 (with a value of 1):

 01 02 03 04 05 06 07 08 09 10
 | | |x(0)---------| | | | | | |

 11 12 13 14 15 16 17 18 19 20
 | | | | | | |y(1)---------| | |

 21 22 23 24 25 26 27 28 29 30
 | | | | | | | | | | |

A pointer is a variable whose value is a memory address. In line 10, for example,

 int* p = nullptr;

To purchase the full version, visit cppdatastructures.com

77

we create a pointer p, of type int*, with an initial value of nullptr. The asterisk (*) means “pointer to,”
and the type int* is read right-to-left, as “pointer to int.” The type int* thus represents the address of an
int.

The keyword nullptr is short for “null pointer,” a special value that means “no address.” Although ptr
is short for “pointer,” some people pronounce it as “putter” (rather than “PTR”) for the sake of brevity.

At this point, there are a few different ways of describing p, all of which mean the same thing:

– “p is a null pointer” (A null pointer is a pointer with a value of no address)
– “p is null”
– “p is nil” (nil, which rhymes with “Bill,” is a synonym for null)

Suppose that on this system, the size of an int* is 1 byte, and that p resides at address 23. The runtime
memory layout thus becomes

 01 02 03 04 05 06 07 08 09 10
 | | |x(0)---------| | | | | | |

 11 12 13 14 15 16 17 18 19 20
 | | | | | | |y(1)---------| | |

 21 22 23 24 25 26 27 28 29 30
 | | |p(nil)| | | | | | | |

After printing the current values of p, x, and y (lines 12-14), we modify the value to p (line 16), via the
statement

 p = &x;

The ampersand (&) is the address-of operator, which returns the address of its operand. Given the
above diagram, the expression (&x) returns 03, the address of x. The entire statement (line 16) thus
sets the value of p to address 03:

 01 02 03 04 05 06 07 08 09 10
 | | |x(0)---------| | | | | | |

 11 12 13 14 15 16 17 18 19 20
 | | | | | | |y(1)---------| | |

 21 22 23 24 25 26 27 28 29 30
 | | |p(03)-| | | | | | | |

To describe p, we can now say “p points to x,” or “p refers to x,” because the value of p is the address
of x.

The referent object (or referent) of a pointer is the object to which the pointer refers. We can therefore
describe x by saying “x is the referent object of p,” or “x is the referent of p.”

To purchase the full version, visit cppdatastructures.com

78

Because p points x, we can indirectly access x via p. The statement (line 17)

 *p = 5;

for example, is equivalent to

 x = 5;

The asterisk (*) is called the indirection operator or dereference operator, which returns the referent of
its operand. In this case, the expression (*p) returns x, the referent of p. The entire statement (line 17)
thus indirectly sets the value of x to 5:

 01 02 03 04 05 06 07 08 09 10
 | | |x(5)---------| | | | | | |

 11 12 13 14 15 16 17 18 19 20
 | | | | | | |y(1)---------| | |

 21 22 23 24 25 26 27 28 29 30
 | | |p(03)-| | | | | | | |

The process of accessing a pointer's referent object is called dereferencing. We can thus read the
expression (*p) as “dereference p,” or more commonly, “the referent of p.” We can therefore read the
statement (*p = 5;) as “Set the referent of p to 5.”

In lines 19-22, we print p (the address of x), *p (the value of p's referent x), x, and y. We then modify
the value of p once again, via the statement (line 24)

 p = &y;

which sets p to the address of y:

 01 02 03 04 05 06 07 08 09 10
 | | |x(5)---------| | | | | | |

 11 12 13 14 15 16 17 18 19 20
 | | | | | | |y(1)---------| | |

 21 22 23 24 25 26 27 28 29 30
 | | |p(17)-| | | | | | | |

The referent address of a pointer is the address to which the pointer refers. In the above diagram, for
example, p's referent address is 17.

The process of changing a pointer's referent address is called reseating. The statement in line 24 thus
reseats p from 03 (the previous referent address) to 17 (the new referent address). Now that p points to
y, the expression (*p) returns y. The statement (line 25)

 *p = 8;

To purchase the full version, visit cppdatastructures.com

79

therefore indirectly sets the value of y to 8:

 01 02 03 04 05 06 07 08 09 10
 | | |x(5)---------| | | | | | |

 11 12 13 14 15 16 17 18 19 20
 | | | | | | |y(8)---------| | |

 21 22 23 24 25 26 27 28 29 30
 | | |p(17)-| | | | | | | |

Finally, we print p, *p, x, and y once more (lines 27-30).

Using the above diagram, here's a brief summary of the notation introduced in this chapter:

– The value of x is 5
– The value of y is 8
– The value of p is address 17 (p's type is int* (pointer to int))

– &x (the address of x) is 03
– &y (the address of y) is 17
– &p (the address of p) is 23

– *p (the referent of p) is y (the int at address 17)

On my machine, the program generates the following output. Memory addresses are represented using
8-digit hexadecimal values:

 p = nullptr = 00000000
 x = 0
 y = 1

 p = &x = 0031F7DC
 *p = 5
 x = 5
 y = 1

 p = &y = 0031F7E0
 *p = 8
 x = 5
 y = 8

Before moving on, there are a few additional points regarding pointers.

Just as int* means “pointer to int,” the same pattern applies to other types, such as double* (pointer to
double), std::string* (pointer to std::string), etc. When setting the value of a pointer, however, the
referent type (int, double, etc.) must match the pointer type (int*, double*, etc.):

 // Continued on next page

To purchase the full version, visit cppdatastructures.com

80

 int i = 9;
 double d = 3.14;

 int* pi = &i; // Ok: Set pi (pointer to an int) to
 // &i (the address of an int)

 double* pd = &d; // Ok: Set pd (pointer to a double) to
 // &d (the address of a double)

 pi = &d; // Compiler error: Can't set pi (pointer to an int) to
 // &d (the address of a double)

 pd = &i; // Compiler error: Can't set pd (pointer to a double) to
 // &i (the address of an int)

Additionally, dereferencing a pointer without a valid referent will result in undefined behavior
(unpredictable consequences at runtime, such as a program crash or invalid output):

 double* q = nullptr;
 string* r;

 *q = 1.618; // Undefined behavior: Dereferencing a null pointer

 cout << *r << endl; // Undefined behavior: Dereferencing a pointer without
 // a valid referent

To purchase the full version, visit cppdatastructures.com

81

5.2: Pass by Reference

Source files and folders

– passByReference
– swapInts

Chapter outline

– Pointers as function parameters
– Pass-by-reference vs. pass-by-value

Now that we understand the basics of using pointers, we'll demonstrate how to use them as function
parameters. To do so, we begin by declaring the function (swap.h, line 3)

 void swap(int* a, int* b);

which has two parameters, a and b, of type int* (pointer to int). As discussed previously, the return
type void indicates that the function doesn't return a value. We've declared the function in namespace
dss (lines 1-2, 4), which stands for the title of this book (Data Structures from Scratch).

The swap function exchanges the value of a's referent with that of b's referent. Suppose, for example,
that a points to an int x, whose value is 17, and b points to an int y, whose value is 43:

 a -> x(17) // The arrow symbol (->) means “points to”
 b -> y(43)

The function call swap(a, b) exchanges the values of x and y, at which point x becomes 43 and y
becomes 17:

 a -> x(43)
 b -> y(17)

To implement swap, we begin by creating a temporary int c (swap.cpp, line 5), initialized to the value
of a's referent. This variable c saves the original value of a's referent, prior to the exchange. We then
set a's referent to the value of b's referent (line 6). Finally, we set b's referent to c, which contains the
original value of a's referent (line 7).

In the above example, lines 5-7 perform the following operations:

 int c = x; // c = 17;
 x = y; // x = 43;
 y = c; // y = 17;

We begin main by obtaining the values of x and y from the user (main.cpp, lines 9-16). In each
iteration of the loop (lines 18-34),

To purchase the full version, visit cppdatastructures.com

82

– We print the current values of x and y (lines 20-21).

– We prompt the user for a single character, which we store in the variable userCommand (lines
23-28). A lowercase s represents a command to swap the values of x and y, and a lowercase q
represents a command to quit.

– If the user entered s (line 30), we call swap (line 31), passing the addresses of x and y. We
then begin the next iteration.

– If the user entered a character other than s (line 32), we terminate the loop (line 33) and exit
main (line 36).

Using the values 17 and 43, our program generates the following output:

 Enter an integer value for x: 17
 Enter an integer value for y: 43

 The value of x is now 17
 The value of y is now 43

 Enter s to swap the values of x and y, or q to quit (case-sensitive): s

 The value of x is now 43
 The value of y is now 17

 Enter s to swap the values of x and y, or q to quit (case-sensitive): s

 The value of x is now 17
 The value of y is now 43

 Enter s to swap the values of x and y, or q to quit (case-sensitive): q

Passing the address of a variable, as in (passByReference/main.cpp, line 31)

 dss::swap(&x, &y);

is called pass-by-reference. In this case, we're passing the addresses of x and y to swap, so x and y are
said to be “passed by reference.”

Conversely, passing the value of a variable, as in (functions/main.cpp, line 25)

 shippingCost(itemWeight)

is called pass-by-value. In this case, we're passing the value of itemWeight to shippingCost, so
itemWeight is said to be “passed by value.”

To purchase the full version, visit cppdatastructures.com

83

5.3: Arrays and Bubble Sort

Source files and folders

– arraySubscript

Additional .cpp files (must be compiled and linked with main.cpp)

– swapInts/swap.cpp

Chapter outline

– Declaring arrays
– Accessing individual elements
– Arrays as function parameters
– Implementing the bubble sort algorithm

An object is a specific instance of a type. Given

 int i = 7;
 double d = 3.14;
 string s = "Ayrshire";

for example, i is an object of type int, d is an object of type double, and s is an object of type string.

An array is a set of objects of a single type, stored as a contiguous sequence in memory. Arrays are the
most primitive type of data structure. Each object in an array is called an element. More broadly
speaking, however, the term element applies to any object stored in any type of data structure, not just
an array.

The following diagram depicts an array x, of 3 ints, at address 15. In this example, the size of an int is
2 bytes:

 11 12 13 14 15 16 17 18 19 20
 | | | | |x[0](4)------|x[1](8)------|x[2](3)------|

 The first element, x[0], is at address 15, and has a value of 4
 The second element, x[1], is at address 17, and has a value of 8
 The third element, x[2], is at address 19, and has a value of 3

As shown above, the syntax of accessing a particular element is

 array_name[index]

The pair of brackets ([]) is called the array subscript operator, and the index is the position of the
desired element. The index of the first element is always 0, so to access the nth element, we use an

To purchase the full version, visit cppdatastructures.com

84

index of (n – 1). Another way to think of this is that the index represents the offset, or number of
elements away, from the first. In the above diagram, for example,

– The first element (x[0]) is 0 elements away from the first, so its index is 0.
– The second element (x[1]) is 1 element away from the first, so its index is 1.
– The third element (x[2]) is 2 elements away from the first, so its index is 2.

The elements in an array are functionally identical to the variables that we've been working with all
along:

 cout << x[0] << endl; // Print the value of element x[0]
 x[0] = 7; // Set the value of element x[0] to 7
 ++x[1]; // Increment the value of element x[1]
 int* p = &x[2]; // p points to element x[2] (address 19, above)
 *p = 6; // Set the value of element x[2] to 6

The syntax of declaring an array is

 element_type array_name[size];

where size is the total number of elements. The size must be a compile-time constant (a fixed value,
known at compile-time). This type of array is called a static array or fixed-size array, because the size
cannot be set (or modified) at runtime:

 int x[3]; // Declares an array x, of 3 ints
 double y[1]; // Declares an array y, of 1 double
 string z[5]; // Declares an array z, of 5 strings

Our program in this chapter prompts the user to enter 5 integers, stores them in an array, and sorts the
values in ascending order. We begin by declaring a compile-time constant totalNumbers (main.cpp,
line 15), with a value of 5. We then use this value to declare numbers, an array of 5 ints (line 16). The
first element is numbers[0], and the fifth element is numbers[4].

The loop (lines 18-22) performs 5 iterations, for i = {0, 1, 2, 3, 4}. In each iteration, we prompt the
user for an integer value, and store it in the element at index i (numbers[i]) (lines 20-21).

We then print the message Performing bubble sort... (line 24), and call the function (lines 25, 7)

 void printArray(int a[], int size);

which prints each element in the given array a, of the given size (total number of elements). As shown
above, the syntax of declaring an array as a function parameter is

 element_type array_name[]

We must include the size as a separate parameter, otherwise we won't know how many elements to
print.

To purchase the full version, visit cppdatastructures.com

85

To implement printArray, we perform a total of size iterations, for i = 0, to i = (size – 1) (line 52). If,
for example, size is 5, then we perform 5 iterations, for i = {0, 1, 2, 3, 4}. In each iteration, we print
the value of the element at index i (a[i]), followed by a whitespace (line 53). After printing the final
element, we insert a new line before returning (line 55).

After printing the array (line 25), we run the bubble sort algorithm (lines 27-38), which rearranges the
values from least to greatest. The term bubble describes how the algorithm works: the largest value
gradually rises to the top, like a bubble in a glass of water. The next largest value then gradually rises
to its proper place, and the process repeats until the entire sequence is sorted.

Before demonstrating the algorithm, we need to introduce sequence notation (the notation used to
describe a sequence of elements). In sequence notation, a sequence is defined by two bounding
elements A and B, separated by a comma. It also contains two symbols, one before A and one after B.

– A left bracket before A indicates that the sequence includes A.
– A left parenthesis before A indicates that the sequence doesn't include A.

– A right bracket after B indicates that the sequence includes B.
– A right parenthesis after B indicates that the sequence doesn't include B.

The sequence

 [numbers[0], numbers[4])

for example, contains every element from numbers[0] to numbers[4], including numbers[0], but not
numbers[4]. The sequence thus contains {numbers[0], numbers[1], numbers[2], numbers[3]}
(elements 0 to 3). Here are a few more examples:

 [numbers[1], numbers[3]] = {numbers[1], numbers[2], numbers[3]}
 [numbers[1], numbers[3]) = {numbers[1], numbers[2]}
 (numbers[1], numbers[3]] = {numbers[2], numbers[3]}
 (numbers[1], numbers[3]) = {numbers[2]}

Returning to the bubble sort algorithm, suppose that numbers contains the values {3, 1, 5, 4, 2}:

 index | 0 | 1 | 2 | 3 | 4 |
 value | 3 | 1 | 5 | 4 | 2 |

The algorithm works by examining the following sequences:

 [numbers[0], numbers[4]) (elements 0 to 3) // Pass 1
 [numbers[0], numbers[3]) (elements 0 to 2) // Pass 2
 [numbers[0], numbers[2]) (elements 0 to 1) // Pass 3
 [numbers[0], numbers[1]) (element 0) // Pass 4

In each pass, we traverse (check each element in) the sequence, where i is the index value of the
current element, and (i + 1) is the index value of the next element. If the current element (numbers[i])

To purchase the full version, visit cppdatastructures.com

86

is greater than the next element (numbers[i + 1]), we swap their values. In the following outline, end
is the index value of the final element in the sequence.

In Pass 1, for example, we traverse the sequence [numbers[0], numbers[4]). The final element in the
sequence is numbers[3], so end is 3. There are 4 elements in the sequence, so we perform 4 iterations,
for i = {0, 1, 2, 3}:

 Pass 1: Traverse [numbers[0], numbers[4]) (elements 0 to 3) // end = 3
 If numbers[0] > numbers[1], then swap them // i = 0
 If numbers[1] > numbers[2], then swap them // i = 1
 If numbers[2] > numbers[3], then swap them // i = 2
 If numbers[3] > numbers[4], then swap them // i = 3

At the end of Pass 1, numbers[4] contains the largest value.

 Pass 2: Traverse [numbers[0], numbers[3]) (elements 0 to 2) // end = 2
 If numbers[0] > numbers[1], then swap them // i = 0
 If numbers[1] > numbers[2], then swap them // i = 1
 If numbers[2] > numbers[3], then swap them // i = 2

At the end of Pass 2, numbers[3] contains the second-largest value.

 Pass 3: Traverse [numbers[0], numbers[2]) (elements 0 to 1) // end = 1
 If numbers[0] > numbers[1], then swap them // i = 0
 If numbers[1] > numbers[2], then swap them // i = 1

At the end of Pass 3, numbers[2] contains the third-largest value.

 Pass 4: Traverse [numbers[0], numbers[1]) (element 0) // end = 0
 If numbers[0] > numbers[1], then swap them // i = 0

At the end of Pass 4, numbers[1] contains the fourth-largest value. Because there are 5 elements in the
array, numbers[0] is left with the fifth-largest (i.e. the smallest) value.

Each iteration of the outer loop (line 27) represents a single pass, where end is the index value of the
final element in the current sequence. The loop performs (totalNumbers – 1) iterations, for end =
(totalNumbers – 2), down to 0. If, for example, totalNumbers is 5, the loop performs 4 iterations, for
end = {3, 2, 1, 0} (as shown above).

The inner loop (lines 29-37) traverses the current sequence, [numbers[0], numbers[end]], where i is
the index value of the current element. In each iteration, numbers[i] is the current element, and
numbers[i + 1] is the next element.

– We begin by printing the message If (current element) > (next element), then swap (line 31).
– If the current element is greater than the next (line 33), we swap their values (line 34).
– Finally, we print the entire array (line 36), displaying the result.

Upon completion of the outer loop, we print the fully sorted array (lines 40-41).

To purchase the full version, visit cppdatastructures.com

87

Given the sequence {3, 1, 5, 4, 2}, for example, the algorithm performs the following operations:

 Iteration 1 (end = 3) // Pass 1
 {
 Iteration 1.1 (i = 0)
 {
 i end
 index | 0 | 1 | 2 | 3 | 4 |
 value | 3 | 1 | 5 | 4 | 2 |

 numbers[0] is greater than numbers[1]
 swap(&numbers[0], &numbers[1]); // swap 3 and 1

 i end
 index | 0 | 1 | 2 | 3 | 4 |
 value | 1 | 3 | 5 | 4 | 2 |
 }

 Iteration 1.2 (i = 1)
 {
 i end
 index | 0 | 1 | 2 | 3 | 4 |
 value | 1 | 3 | 5 | 4 | 2 |

 numbers[1] is not greater than numbers[2];
 }

 Iteration 1.3 (i = 2)
 {
 i end
 index | 0 | 1 | 2 | 3 | 4 |
 value | 1 | 3 | 5 | 4 | 2 |

 numbers[2] is greater than numbers[3]
 swap(&numbers[2], &numbers[3]); // swap 5 and 4

 i end
 index | 0 | 1 | 2 | 3 | 4 |
 value | 1 | 3 | 4 | 5 | 2 |
 }

 Iteration 1.4 (i = 3)
 {
 i
 end
 index | 0 | 1 | 2 | 3 | 4 |
 value | 1 | 3 | 4 | 5 | 2 |

 numbers[3] is greater than numbers[4]
 swap(&numbers[3], &numbers[4]); // swap 5 and 2

 // Continued on next page

To purchase the full version, visit cppdatastructures.com

88

 i
 end
 index | 0 | 1 | 2 | 3 | 4 |
 value | 1 | 3 | 4 | 2 | 5 |
 }
 }

 // The largest value (5) is now at the correct position
__

 Iteration 2 (end = 2) // Pass 2
 {
 Iteration 2.1 (i = 0)
 {
 i end
 index | 0 | 1 | 2 | 3 | 4 |
 value | 1 | 3 | 4 | 2 | 5 |

 numbers[0] is not greater than numbers[1];
 }

 Iteration 2.2 (i = 1)
 {
 i end
 index | 0 | 1 | 2 | 3 | 4 |
 value | 1 | 3 | 4 | 2 | 5 |

 numbers[1] is not greater than numbers[2];
 }

 Iteration 2.3 (i = 2)
 {
 i
 end
 index | 0 | 1 | 2 | 3 | 4 |
 value | 1 | 3 | 4 | 2 | 5 |

 numbers[2] is greater than numbers[3]
 swap(&numbers[2], &numbers[3]); // swap 4 and 2

 i
 end
 index | 0 | 1 | 2 | 3 | 4 |
 value | 1 | 3 | 2 | 4 | 5 |
 }
 }

 // The second-largest value (4) is now at the correct position
__

 // Continued on next page

To purchase the full version, visit cppdatastructures.com

89

 Iteration 3 (end = 1) // Pass 3
 {
 Iteration 3.1 (i = 0)
 {
 i end
 index | 0 | 1 | 2 | 3 | 4 |
 value | 1 | 3 | 2 | 4 | 5 |

 numbers[0] is not greater than numbers[1];
 }

 Iteration 3.2 (i = 1)
 {
 i
 end
 index | 0 | 1 | 2 | 3 | 4 |
 value | 1 | 3 | 2 | 4 | 5 |

 numbers[1] is greater than numbers[2]
 swap(&numbers[1], &numbers[2]); // swap 3 and 2

 i
 end
 index | 0 | 1 | 2 | 3 | 4 |
 value | 1 | 2 | 3 | 4 | 5 |
 }
 }

 // The third-largest value (3) is now at the correct position
__

 Iteration 4 (end = 0) // Pass 4
 {
 Iteration 4.1 (i = 0)
 {
 i
 end
 index | 0 | 1 | 2 | 3 | 4 |
 value | 1 | 2 | 3 | 4 | 5 |

 numbers[0] is not greater than numbers[1];
 }
 }

 // The fourth-largest value (2) is now at the correct position

 // There are 5 values altogether, and the 4 largest ones (5, 4, 3, 2) are at
 // the correct positions

 // The only remaining value (1, the fifth-largest) is therefore also at the
 // correct position

Given the sequence {3, 1, 5, 4, 2}, our program generates the following output:

To purchase the full version, visit cppdatastructures.com

90

 Enter a number (integer): 3
 Enter a number (integer): 1
 Enter a number (integer): 5
 Enter a number (integer): 4
 Enter a number (integer): 2

 Performing bubble sort...
 3 1 5 4 2
 If 3 > 1, then swap
 1 3 5 4 2
 If 3 > 5, then swap
 1 3 5 4 2
 If 5 > 4, then swap
 1 3 4 5 2
 If 5 > 2, then swap
 1 3 4 2 5
 If 1 > 3, then swap
 1 3 4 2 5
 If 3 > 4, then swap
 1 3 4 2 5
 If 4 > 2, then swap
 1 3 2 4 5
 If 1 > 3, then swap
 1 3 2 4 5
 If 3 > 2, then swap
 1 2 3 4 5
 If 1 > 2, then swap
 1 2 3 4 5

 The sorted sequence is:
 1 2 3 4 5

Before moving on, there's an additional point to note regarding the use of arrays as function
parameters. When passing an array to a function, as in (main.cpp, lines 25, 36)

 printArray(numbers, totalNumbers);

the argument (numbers) is automatically passed by reference. Within the body of printArray (lines 50-
55), the parameter a is not a copy of numbers; rather, the name a refers to the exact same array as
numbers, just by a different name. The reason for this will become clear in the next chapter, when we
discuss the relationship between pointers and arrays. For now, here's a summary of the key points
we've covered so far:

– An array is a set of objects, of a single type, organized as a contiguous sequence in memory.
– To access a particular element, we use the array subscript operator.
– The first element has an index of 0, so to access the nth element, we use an index of (n – 1).
– The size of an array must be a compile-time constant; we cannot set or change it at runtime.
– A function with an array parameter must also include a separate parameter for the size.
– When passing an array to a function, it is automatically passed by reference; the array

parameter is not a separate copy of the array passed by the caller.

To purchase the full version, visit cppdatastructures.com

